MXD – Crystallographic System User's Guide

page
127/127

cMXD User's Guide

M X D

is a

Mixed data eXecutive

for

Crystallography

Version 3.9.M

March 2008

Pierre Wolfers

Institut Néel

C.N.R.S. 166 X 38042 GRENOBLE-CEDEX, FRANCE

Summary

Preface
4

I.1 - Getting start with MXD
10

I.1.1 - MXD - To Call the MXDCMP compiler and perform some various task
10

I.1.2 - MLS - To perform a least-squares run
10

I.1.3 - MXDDEL To Reset MXD To Normal State
11

I.2 – Crystallographic Structure example
11

I.3 – Magnetic structure example
13

I.4 – MXD source file template to fit with heterogeneous data (X-Ray and neutrons)
15

I.5 – Template to fit from twin or magnetic domains data
16

I.6 – Helimagnetic structure fit
17

I.7 – Becker and Coppens extinction management
19

I.8 – Polarized neutrons management
20

II.2 – Atomic structure factor
25

II.3 - Magnetic structure factor
26

II.4 – Polarized neutron intensities
28

I.5 – Modulated atomic structure management
29

II.6 – Calculated and observed values
31

II.6.1 - Intensities
31

II.6.2 - F2 Observation Data
32

II.6.3 - Structure Factor Based Observation Data
32

II.6.4 - Polarized neutron case
32

II.7 – Least-Squares formulae
33

III.1 – Keywords notations
36

III.2 – Primitive parameters notations
37

III.3 – Input data form
39

III.4 – Optional and necessary primitive parameters
39

III.5 – Alternative choice notation
40

IV.1 - Heading (TITLE) statement
41

IV.2 The PRAGMA statement
42

IV.2.2 - The D Option For Data Interpretation Listing
43

- The N Option For Not Existing File Error Handling
43

IV.2.5 - The F Option For Source Input Format
44

IV.4 ENDFILE statement
45

IV.5 - The MXD source input file logic
45

 TC "Preface" \l 1 Preface

The MXD Crystallographic System is the result of a new approach for structure determination. The modern program language as PASCAL and ADA are suitable to perform an efficient data syntax analysis, therefore the tradition is to write the PASCAL compiler in PASCAL. The present software is written in PASCAL to take advantage of the dynamic memory allocation, recursive procedures or functions, pointed variable. This crystallographic system is well suited to use a large variety of linear or non linear constraints. It can be used for many radiation data together, as Neutron or X-Ray data.

The MXD scope is :

- Crystallographic and/or magnetic structures, with or without structure modulation and mono or multi wave-vector modes, and with powder or single crystal data.

- The experimental data must be in integrated form, and for powders a management procedure for a group of overlapping reflection is included. A limited data reduction is possible by the system (as 5 or 3 points integration method).

This crystallographic system has two components:

- The MXD program which is the DATA COMPILER, this is the most complex part of the system. This data compiler program is the MXDCMP program which must run in first.

- The APPLICATION PROGRAMS which perform the desired computing with the MXD compiled code. The main application program is the Least Square Fitting program MXDLSQ, but some other one can be added in the future.

The MXD REFERENCE is :

MXD: a general least-squares program for non-standard crystallographic refinements.

P. Wolfers, Institut Néel, CNRS et Université J. Fourier,

C. N. R. S., 25 avenue des Martyrs,

B.P. 166 X, 38042 Grenoble CEDEX, France.

P. Wolfers, J. Appl. Cryst, 23, 554-557, (1990).

CONTENTS

CHAPTER III SYNTAX ELEMENTS OF THE MXD LANGUAGE.

 III.1 KEYWORD NOTATION. III-1

 III.2 PRIMITIVE PARAMETER NOTATION. III-1

 III.2.1 Numeric Expression Notation. III-1

 III.2.2 String Constant Expression Notation. III-2

 III.2.3 Identifier Notation. III-2

 III.2.4 Expression Operators. III-3

 III.3 INPUT DATA FORM. III-3

 III.4 OPTIONAL AND OBLIGED PRIMITIVE PARAMETERS. . . . III-3

 III.5 ALTERNATIVE CHOICE NOTATION. III-4

 III.6 GENERAL MXD STATEMENT FORM. III-4

CHAPTER IV DATA MANAGEMENT PRIMITIVES OF MXD.

 IV.1 HEADING STATEMENT. IV-1

 IV.2 THE PRAGMA STATEMENT. IV-1

 IV.2.1 The L Option For List On Or Off. IV-2

 IV.2.2 The D Option For Data Interpretation Listing. IV-3

 IV.2.3 The M Option For Macro Expanssion Listing. . . IV-3

 IV.2.4 The N Option For Not Existing File Error

 Handling. IV-3

 IV.2.5 The F Option For Source Input Format. IV-3

 IV.3 INCLUDE AND CHAINE STATEMENT. IV-4

 IV.4 ENDFILE STATEMENT. IV-4

 IV.5 THE MXD SOURCE INPUT FILE LOGIC. IV-5

 IV.6 THE APPLICATION PROGRAM OPTION SPECIFICATIONS. . IV-6

CHAPTER V PHYSICAL PRIMITIVES OF MXD.

 V.1 THE UNIT CELL DEFINITION STATEMENT. V-1

 V.2 DECLARATIONS AND ASSIGNEMENT STATEMENTS. V-2

 V.2.1 Declaration And Assignement Of Variable. V-3

 V.2.2 Declaration And Assignation Of Parameters. . . . V-3

 V.3 VARIABLE MANAGEMENT STATEMENTS. V-5

 V.3.1 FIXED And UNFIXED Statements. V-5

 V.3.2 Variable Range Specification. V-5

 V.3.3 Diagonal Block For Least-square Program. V-6

 V.4 THE ATOM DECLARATION STATEMENT. V-7

 V.5 THE WAVE VECTOR DECLARATION STATEMENT. V-8

 V.6 THE POLARIZED DIRECTION DECLARATION STATEMENT. . . V-8

 V.7 THE MAGNETIC MOMENT DECLARATION STATEMENT. V-8

 V.8 THE MODULATED DISPLACEMENT DECLARATION STATEMENT. V-9

CHAPTER VI SYMMETRY MANAGEMENT STATEMENTS.

 VI.1 THE LATTICE STATEMENT. VI-1

 VI.2 THE CENTER STATEMENT. VI-2

 VI.3 THE SYMTRY STATEMENT. VI-2

 VI.4 THE GENSPACE STATEMENT. VI-2

 VI.5 SOME CONSIDERATIONS ON THE USE OF SYMMETRY

 INFORMATIONS. VI-3

CHAPTER VII THE EXPERIMENTAL DATA MANAGEMENT STATEMENTS.

 VII.1 DATA COLLECTION DEFINITION STATEMENT. VII-1

 VII.2 DATA COLLECTION REFERENCE STATEMENT. VII-6

 VII.3 CLRDATA STATEMENT. VII-6

 VII.4 MANAGEMENT OF FORM FACTOR TABLE IN BINARY DATA

 FILE. . VII-7

 VII.5 MAGNETIC SPECIFICATION STATEMENT. VII-7

VII. WARNING FOR PREVIOUSLY DEFINED DATA COLLECTIONS. VII-8

VIII. CHAPTER VIII EXPRESSIONS AND SYMBOLS IN MXD.

 VIII.1 THE MXD FUNCTIONS. VIII-3

 VIII.1.1 Standard Function Of MXD. VIII-3

 VIII.1.2 User Defined MXD Function. VIII-5

 VIII.2 RESERVED AND PREDEFINED SYMBOLS. VIII-6

 VIII.2.1 Predefined Variable Parameters. VIII-6

 VIII.2.2 Predefined Constant Parameters. VIII-7

 VIII.2.3 Reserved Parameter Names. VIII-8

CHAPTER IX MACRO FACILITIES IN THE MXD LANGUAGE.

 IX.1 MACRO STATEMENTS. IX-1

 IX.2 LOCAL SYMBOL DEFINITION. IX-2

 IX.3 CONDITIONAL COMPILATION OF A PART OF MXD SOURCE. IX-3

 IX.4 THE REPEAT STATEMENT. IX-4

 IX.5 THE STOP ON DETECTED ERROR STATEMENT. IX-4

 IX.6 THE MACRO LIBRARY MANAGEMENT OF MXDCMP. IX-4

 IX.7 THE CONTROLLED INPUT/OUTPUT OF MXDCMP. IX-6

 IX.7.1 The Controlled Terminal Operations. IX-6

 IX.7.2 The Listing Outputs. IX-7

 IX.7.3 The User File Management. IX-7

CHAPTER X THE LEAST SQUARE PROGRAM MXDLSQ.

 X.1 THE SPECIFICATIONS OPTIONS. X-1

 X.2 THE LISTING OUTPUT OPTIONS. X-3

 X.3 OUTPUT OPTIONS TO GO TO OTHER PROGRAMS. X-7

CHAPTER XI VAX/VMS IMPLEMENTATION OF MXD.

 XI.1 MXD INSTALLATION. XI-1

 XI.1.1 The First MXD Installation Is Performed In

 Steps As Below : XI-1

 XI.1.2 TO Upgrade From A Previous Version 3.4 Or

 Above. XI-2

 XI.2 VAX/VMS MXD COMMANDS. XI-3

 XI.2.1 The Least Square Command MLS. XI-3

 XI.2.2 The MXD Command. XI-4

 XI.2.3 The MXDDEL Statement. XI-5

APPENDIX A ERROR NUMBER SUMMARY

APPENDIX B HOW WRITE MXD DATA AS STANDARD.

APPENDIX C LEGAL EXPRESSION OPERATORS AND STANDARD FUNCTION.

 C.1 OPERATORS FOR ALL CONSTANT EXPRESSIONS. C-1

 C.2 OPERATORS FOR NUMERIC ALL EXPRESSIONS. C-1

 C.3 OPERATOR FOR STRING EXPRESSIONS. C-1

 C.4 FUNCTIONS FOR VARIABLE EXPRESSIONS. C-2

 C.5 FUNCTIONS FOR ALL NUMERIC EXPRESSIONS. C-2

 C.6 OPERATORS FOR ALL NUMERIC EXPRESSIONS. C-2

 C.7 FUNCTIONS FOR NUMERIC CONSTANT EXPRESSION. C-2

 C.8 OPERATORS AND FUNCTIONS FOR STRING EXPRESSION. . . C-3

 C.9 THE PRE-DECLARED VARIABLE PARAMETERS. C-3

APPENDIX D THE STANDARD MACRO LIBRARIES.

 D.1 THE GENERAL PURPOSE MACRO LIBRARY "MXDLIB.MXL" . . D-1

 D.1.1 The HELMOM Macro For Helimagnetic Moment

 Description. D-2

 D.1.2 The HELDSP Macro For Modulated Displacement

 Description. D-2

 D.1.3 Le Page And E.J. Gabe Extinction Correction. . . D-3

 D.1.4 SHEL-X Extinction Correction. D-4

 D.1.5 Cooper And Roose Formula For A Cylinder

 Absorption. D-4

 D.2 THE P. BECKER AND P. COPPENS (LINEX LIKE)

 EXTINCTION CORRECTION. D-5

APPENDIX E MXD DATA FILES STRUCTURES

APPENDIX F MXD INTERFACE WITH OTHER CRYSTALLOGRAPHIC SYSTEMS.

 F.1 OUTPUT INTERFACES TO THE CAMBRIDGE LIBRARY MK3. . F-1

 F.2 INPUT INTERFACE FROM CAD4 GONIOMETER (ENRAF NONIUS

 4-CIRCLES). F-1

 F.3 INPUT INTERFACE FROM THE SDP (B. FRENZ)

 CRYSTALLOGRAPHIC SYSTEM. F-1

 F.4 OUTPUT INTERFACE TO THE SDP (B. FRENZ)

 CRYSTALLOGRAPHIC SYSTEM. F-2

APPENDIX G EQUIVALENT REFLECTIONS UTILITIES.

 G.1 SORTING AN ASCII FILE IN INCREASING

 SIN(THETA)/LAMBDA. G-1

 G.2 EQUIVALENT AVERAGE AND OR TWIN/MAGNETIC DOMAINS

 EXPANSSION. G-1

I - Introduction to MXD

This chapter is a description of the main aspects of the data file for the MXD system. It gives also the basic features to use MXD on the VAX/VMS systems, for the others MXD implantations, some differences can be observed.

The chapter XI gives all the standard implementations details.

The input data files of the Data Compiler (MXDCMP) are text files which can be written by a standard text editor (for example EVE or EDT on the VAX/VMS systems).

We will develop with some data examples, the main aspects of the MXD data, and explain the logical data design of MXD.

For each example, the presentation of the data file model is made in two parts: the left part is the data text and the right part is a comment. This right part is (as a legal comment in true MXD data) surrounded by the symbol "(*" and "*) or "{" and "}" as this:

(* this is a comment *)

{ this is an other comment }

(* This { is a unique } comment *)

In the following examples, the data file models are templates, not ready-to-use files. Thus, the reader can understand the structure of the data for a particular application.

For all magnetic structure problems the user must know the working space definition that is used for the magnetic moment components. The CELL statement defines the working space for all crystallographic system as :

[image: image1.emf]

Xa,



Y∈plane



a,



b



and {



Z=a∧



b¿

When the RCELL unit cell statement is used, the definition is changed to

[image: image2.emf]

X



Y



Zbold 111 axis and {



X∧a,



Y∧



b,



Z∧cin the plane [111].¿

The advantage of that last working space definition is to keep the three fold axis in the (111) direction, which is more convenient to express the symmetry relations.

 TC "I.1 - Getting start with MXD" \l 1 I.1 - Getting start with MXD

The next commands can be system dependant, so the activation of MXD can present some differences among the different MXD implementations. The described commands are the standard VAX/VMS implementation commands.

The chapter XI gives more information on the supported implementations.

The first thing to use MXD is to execute the MXDDEF system procedure. This file (MXDDEF.COM) which is located in a system manager dependant disk area, is frequently actived by the initial user login command procedure. It uses a monitor command line as :

$ @SYS$USERSOFT:[CRYSTALLO.MXD]MXDDEF ! Install MXD definitions.

The correct equivalent line can be inserted in the initial login file (LOGIN.COM). It defines the MXD commands and the logical device "MXDLIB:" that is the MXD software location in the system.

The MXD commands (for VAX/VMS systems) are MXD, MLS and MLSC.

 TC "I.1.1 - MXD - To Call the MXDCMP compiler and perform some various task" \l 1 I.1.1 - MXD - To Call the MXDCMP compiler and perform some various task

For example, to create the absorption table for a spherical single crystal, you can type-in

$ MXD MXDLIB:ABSORB

... give the required values ...

$

or also to perform a particular computing (If you had lost your HP or TEXAS pocket computer):

$ MXD

MXD> DISPLAY ' 2(1/2) = ', 2**(1/2);

 2(1/2) = 1.414213538E+00

MXD>

$

 TC "I.1.2 - MLS - To perform a least-squares run" \l 1 I.1.2 - MLS - To perform a least-squares run

This command can receive three parameters.

The first one is the MXD file specification that you want to submit, that is always required but as a defaulted file type ".MXD".

The second one is the listing device that is defaulted to the user's terminal. The "*" listing device is equivalent to TT: the user's terminal.

The third one is the new save device assignement (for the logical device "IN:"). This device can be used to reset the fit parameters (The MXD VARIABLES) at the values computed from a previous least-squares run. The default value of this parameter is the null device (NL:) after the login (MXDDEF execution) and the value is not changed when this parameter is not given. To restart from the initial state the user must specify "NL:" and to restart from last state the user can specify "SY:" that is equivalent to the current default directory.

For example, if the MXD file has the name "UAPHA.MXD", to write listing on the terminal

$ MLS UALPHA

to continue the least-squares from the last MXD variable state

$ MLS UALPHA * SY:

and to restart the least square from the initial state and generate a listing to the line printer $PRINTER (that must be defined):

$ MLS UALPHA $PRINTER: NL:

 TC "I.1.3 - MXDDEL To Reset MXD To Normal State" \l 1 I.1.3 - MXDDEL To Reset MXD To Normal State

After a crash or user stop by the CTRL-Y key MXDDEL deletes all trailing initialization MXD files with the name "MXD.INI". MXDDEL must be used after any MXD stop before the normal end, especially when you want to use the MXD command without parameters.

 TC "I.2 – Crystallographic Structure example" \l 1 I.2 – Crystallographic Structure example

This is a small example easy to understand just given to demonstrate the MXD principles in a very simple case. This is the case of a powder neutron diffraction pattern without overlapping reflection (all reflections are separately integrated) with nuclear diffraction only (no magnetic contribution to the reflections).

 OPTION(NCYCLE)=2; (* WE RUN MXDLSQ FOR 2 CYCLES *)

 OPTION(LISTHKL)=ALWAYS; (* WE PRINT REFLECTION LIST AFTER THE

 LAST CYCLE *)

 OPTION(LISTMAT)=YES; (* WE PRINT ALSO THE CORRELATION

 MATRIX *)

 TITLE ' U ALPHA ESSAI DE MDX-MDXLSQ ';(* GIVE A TITLE FOR THIS RUN *)

 { UNIT CELL } (* ALTERNATE FORM FOR DATA COMMENT *)

 CELL 2.884,5.869,4.932; (* UNIT CELL - ORTHORHOMBIC SYSTEM *)

 { SPACE GROUP ELEMENT FOR CMCM }

 CENTER; (* THE SPACE GROUP IS CENTERED *)

 SYMTRY('E') = 1, 0, 0, 0.0, (* IDENTITY SYMMETRY ELEMENT *)

 0, 1, 0, 0.0,

 0, 0, 1, 0.0;

 SYMTRY('2X') = 1, 0, 0, 0.0, (* BINARY 2x AXIS *)

 0, -1, 0, 0.0,

 0, 0, -1, 0.0;

 SYMTRY('2Y') =-1, 0, 0, 0.0, (* BINARY 2y AXIS *)

 0, 1, 0, 0.0,

 0, 0, -1, 1/2;

 SYMTRY('2.1Z') =-1, 0, 0, 0.0, (* BINARY HELICOIDAL 2z AXIS *)

 0, -1, 0, 0.0,

 0, 0, 1, 1/2;

 { VARIABLE DEFINITION }

 VARIABLE SCALE=135.68; (* DEFINE SCALE AS A VARIABLE

 WITH AN INITIAL VALUE OF

 153.68 *)

 LSQBLOCK('SCALE')=1; (* THE SCALE VARIABLE IS

 INDEPENDENTLY REFINED IN

 A LEAST-SQUARE DIAGONAL BLOCK

 WITH A DAMPENING FACTOR OF 1 *)

 VARIABLE UY=0.1019; (* DEFINE UY AS VARIABLE WITH AN

 INITIAL VALUE OF 0.1019 *)

 VARIABLE BU = 0.4296; (* DEFINE BU AS A VARIABLE WITH AN

 INITIAL VALUE OF

 0.4296 = DEBYE PAR OF URANIUM *)

 PARAM UU = BU/(8*3.1416**2); (* DEFINE UU AS THE BU EQUIVALENCE

 IN U DEBYE FACTOR TERM, UU IS

 A VARIABLE PARAMETER NOT A

 CONSTANT BECAUSE SOME

 VARIABLE (HERE BU) APPEARS IN

 THE UU DEFINITION *)

 { NEUTRON DIFFUSION - OR FERMI LENGTH }

 PARAM UDIF = 0.853; (* DEFINES THE UDIF CONSTANT *)

 { ATOM DESCRIPTION } (* DEFINES SOME OTHER CONSTANTS *)

 PARAM POP = 1{POPULATION = 1} * (* A COMMENT CAN BE ADDED ANYWHERE

 (1/4) {MULTIPLICITY OF SITE}; A SPACE IS AVAILABLE *)

 ATOM('U')=UDIF,,POP, 0, UY, 1/4,UU ; (* DEFINE AN ATOM WITH THE

 NAME "U", THE UDIF REAL SCATTERING

 FACTOR, THE CONTRACTED OCCUPANCY

 FACTOR OF POP, THE COORDINATES

 (0, UY, 1/4), AND THE THERMAL

 FACTOR UU. *)

 {DATA COLLECTION}

 DATA('SILOE-M',SCALE,WE=1/SG) (* DEFINE A DATA COLLECTION WITH

 THE NAME "SILOE-M",

 THE SCALE FACTOR SCALE, AND

 WHERE THE REFLECTION WEIGHTS

 ARE COMPUTED AS 1/SIGMA *)

 IH,IK,IL,MUL,RAY,SG; (* THE DATA FIELD ORDER IS

 THE REFLECTION NUMBERS H,K,L,

 THE MULTIPLICITY,

 THE REFLECTION INTENSITY AND

 ITS SIGMA *)

 0 2 0 2 61.5 0.4 (* THE DATA COLLECTION FOLLOWS *)

 1 1 0 4 1110.2 18.4

 0 2 1 4 1189.9 18.4

 0 0 2 2 650.8 20.2

 1 1 1 8 1097.4 5.0

 0 2 2 4 111.5 0.9

 END; (* END OF DATA COLLECTION *)

 (* END OF MXD DATA FILE *)

 TC "I.3 – Magnetic structure example" \l 1 I.3 – Magnetic structure example

This example demonstrates the magnetic structure approach of MXD in a simple case with a triangular structure.

 OPTION(NCYCLE)=5; (* WE RUN MXDLSQ FOR 5 CYCLES *)

 OPTION(LISTHKL)=YES; (* WE PRINT REFLECTION LIST AFTER THE

 LAST CYCLE *)

 OPTION(MXCORREL)=0.65; (* WE PRINT ALSO THE CORRELATION

 MATRIX *)

 TITLE ' Example for Magnetic Structures Fitting On Fe2 As';

 (* GIVE A TITLE FOR THIS RUN *)

 { UNIT CELL } (* ALTERNATE FORM FOR DATA COMMENT *)

 CELL 6.490,, 3.597,,,120; (* UNIT CELL - HEXAGONAL SYSTEM *)

 { GROUPE D'ESPACE P-6 2 M }

 LATTICE 'P'; (* PRIMITIVE LATTICE *)

 SYMTRY('-6') = 0, -1, 0, 0, (* -6 OPERATOR *)

 1, -1, 0, 0,

 0, 0, -1, 0;

 SYMTRY('MU') = 0, 1, 0, 0, (* (110) Mirror *)

 1, 0, 0, 0,

 0, 0, 1, 0;

 GENSPACE; (* ASK FOR THE AUTOMATIC SPACE GROUP

 GENERATION *)

 { VARIABLE DEFINITIONS }

 VARIABLE SCALE=1.8; (* DEFINE SCALE AS A VARIABLE

 WITH THE INITIAL VALUE OF 1.8 *)

 VARIABLE XFE1 = 0.59385, (* DEFINE THE ATOMIC POSITIONS *)

 XFE2 = 0.25621, (* VARIABLES *)

 XAS1 = 0.01523;

 VARIABLE UFE1 = 0.005, UFE2 = 0.005,(* DEFINE THE ISOTROPIC *)

 UAS1 = 0.010, UAS2 = 0.004;(* THERMAL VIBRATION VAR. *)

 LIMITS 0,, UFE1, UFE2, UAS1, UAS2; (* LIMIT THE U TO POSITIVE VALUES *)

 VARIABLE MFEX = 2.56 { IN Bmu }, (* INITIAL MAGNETIC MOMENT *)

 MFEY = 0.6 { In Bmu }; (* OF EACH ATOM *)

 LSQBLOCK('GENERAL')= 0.75; (* SET THE GENERAL DAMPENING

 FACTOR TO 0.7 *)

 { FIXED/UNFIXED }

 UNFIXED SCALE; (* TO FIX SOME VARIABLE Y *)

 (* CAN REPLACE "UN" BY " " *)

 UNFIXED XFE1, XFE2; (* IN THE APPROPRIATE LINE *)

 UNFIXED UFE1, UFE2,UAS1,UAS2;

 UNFIXED MFE1, MFE2;

 { READ THE LAST FITTING RESULT }

 INUCLUDE 'IN:M.SAV', L:2; (* THE L:2 OPTION SET THE LISTING

 OF THE READ VARIABLE VALUE *)

 { MAGNETIC FORM FACTOR }

 (*

 It can be included from an other file as this INCLUDE "'FE.FRM';" or

 as here directly defined in the MXD data file (so called source file)

 *)

 PARAM FEFRM(0.0,0.05) = (1, { the 1/2d step is 0.05 and origin is 0 }

 .965, 0.900, 0.806, 0.693, 0.574, 0.460, 0.358,

 0.274, 0.206, 0.153, 0.111, 0.079, 0.053, 0.033,

 0.017, 0.006, -0.002, -0.006, -0.009, -0.010);

 { ATOMIC STRUCTURE DESCRIPTION }

 { THE MAGNETIC ATOMS ARE DESCRIBED IN THE P1 GROUP }

 ATOM('FE11') = BFE,, 1, XFE1, 0, 1/2, UFE1;

 ATOM('FE12') = BFE,, 1, 0, XFE1, 1/2, UFE1;

 ATOM('FE13') = BFE,, 1, -XFE1, -XFE1, 1/2, UFE1;

 ATOM('FE21') = BFE,, 1, XFE2, 0, 0, UFE2;

 ATOM('FE21') = BFE,, 1, 0, XFE2, 0, UFE2;

 ATOM('FE21') = BFE,, 1, -XFE2, -XFE2, 0, UFE2;

 { THE NON MAGNETIC ATOMS ARE DESCRIBED IN P-62M GROUP }

 ATOM('AS1') = BAS,,1/12, 0, 0, 1/2, UAS1;

 ATOM('AS2') = BAS,, 1/6, 1/3, 2/3, 0, UAS2;

 { MAGNETIC STRUCTURE DEFINITIONS }

 { Two Triangular structures shifted from 60 degrees }

 MOMENT('M1', 'FE11') = FEFRM, M1, 0; (* M1 // a *)

 MOMENT('M2', 'FE12') = FEFRM, M1*COS(120), M1*SIN(120); (* M2 // b *)

 MOMENT('M3', 'FE13') = FEFRM, M1*COS(240), M1*SIN(240); (* M3 // -a -b *)

 MOMENT('M4', 'FE21') = FEFRM, M2*COS(60), M2*SIN(60); (* M4 // a + b *)

 MOMENT('M5', 'FE22') = FEFRM, M2*COS(180), M2*SIN(180); (* M5 // -a *)

 MOMENT('M6', 'FE23') = FEFRM, M2*COS(300), M2*SIN(300): (* M6 // -b *)

 { DATA COLLECTION }

 DATA('T=20K', SCALE, WE=1/SG, MUL=2) IH, IK, IL, IS=-1, RAY, SG;

 INCLUDE 'FE2AS.DAT'; { The data are located in this included file }

 (* The data format is One line per reflection as this :

 h1 k1 l1 { first hkl of a reflection set }

 h2 k2 l2 { second hkl of the same reflection set }

 hn kn ln 1 Int sigma { the last hkl following by 1 (Is field)

 and in the order Intensity of the set

 and related sigma (corrected of Lorentz)}

 2 3 -5 1 32.4 1.2 { is an example of single reflection }

 END;

 TC "I.4 – MXD source file template to fit with heterogeneous data (X-Ray and neutrons)" \l 1 I.4 – MXD source file template to fit with heterogeneous data (X-Ray and neutrons)

 { X - Ray and neutron mixed fitting data template }

 ...

 { Get the X-Ray form factor table }

 INCLUDE 'FE.FRX'; { we define elemFRX (the form factor) }

 INCLUDE 'OX.FRX';

 ...

 { Get the used magnetic form factor }

 INCLUDE 'FE.FRM';

 { For the anomalous diffusion }

 { Define the elemDFPs (delta F prime) and elemDFS (delta F second) }

 PARAM

 FEDFP = 0.301, FEDFS = 0.845,

 OXDFP = 0.047, OXDFS = 0.006;

 ...

 { Define the Fermi length used (neutron) in E-12 Cm unit }

 PARAM

 FEb = 0.95,

 OXb = 0.58;

 { Define the convention : SELNB = 0 for X-Ray and SELNB = 1 for neutrons }

 { SELNB = 0 1 }

 MAGNETIC NO { X-Ray }, YES{ neutron };

 { Define the general diffusion factors }

 PARAM

 RFEDIF = SELECT(FEFRX+ FEDFP, FEB), IFEDIF = SELECT(FEDFS),

 RFEDIF = SELECT(FEFRX+ FEDFP, FEB), IFEDIF = SELECT(FEDFS);

 ..

 { ... possible symmetry definitions ... }

 ...

 { List Of Atoms }

 { Nota all magnetic atoms must be described in the P1 space group }

 ...

 ATOM('Fe34g') = RFEDIF, IFEDIF, ... ;

 ...

 { List of magnetic moments }

 ...

 MOMENT('Fe3', 'Fe34g') = FEFRM, ... ;

 ...

 ...

 ...

 { DATA collection for X-Ray experiment }

 DATA('X-RAY',SCALEX, SELNB = 0 {Set for X-Ray }, ...) ... ;

 ...

 END;

 { DATA collection for neutron experiment }

 DATA('Neutron',SCALEN, SELNB = 1 {Set for neutron }, ...) ... ;

 ...

 END;

 TC "I.5 – Template to fit from twin or magnetic domains data" \l 1 I.5 – Template to fit from twin or magnetic domains data

 Case of Three (3) twin individuals.

 ...

 ...

 { Twin population variables }

 VARIABLE PA = 30, PB = 40 { Angle Variable };

 LIMITS 1, 89, PA, PB; { Limited to first sector }

 ...

 { Twin Population definitions }

 PARAM

 P1 = COS(PA)2, P1 = SIN(PA)2 ; { Is same operator than ** }

 P2 = P1*COS(PB)2, P3 = P1*SIN(PB)2;

 ...

 { Use in the data statement }

 { The scale is modified by the

 DATA('Twinxxx',(SCALE {Scale factor},

 SELECT(P1,P2,P3) { $FN2 correction factor},

 SELECT(P1,P2,P3) { $FM2 correction factor),

 ...) IH, IK, IL, SELNB, RAY, Sg, IS = -1;

 ...

 (* The data are organized as this (for each measured reflection) :

 { for a peak containing the contribution of

 three (3) individuals reflection }

 h2 k2 l2 2

 h1 k1 l1 1

 h0 k0 l0 0 Intensity sigma 1

 { for two (2) individual reflection }

 h2 k2 l2 2

 h1 k1 l1 1 Intensity sigma 1

 { for single reflection }

 h0 k0 l0 0 Intensity sigma 1

 *)

 END;

The principle is to describe the structure for the twin individual number 0. If the symmetry operator op transforms the twin domain # n in the twin individual # 0, then the [h0,k0,l0] reflection of the sample has a part due to the twin domain # n that is the reflection op-1.[h0,k0,l0]. The contribution of each twin domain can be computed as a contribution of the model (reference system of domain # 0) with the appropriated domain weight.

 TC "I.6 – Helimagnetic structure fit" \l 1 I.6 – Helimagnetic structure fit

A-With one wave vector

 ...

 WAVEVECT('Q1') = qx, qy, qz; { In the reciprocal lattice coordinates }

 ...

 MOMENT('MK','ATMK','Q1') = MKFRM, RMX, RMY, RMZ, IMX, IMY, IMZ;

 ...

 ...

 DATA(...) IH, IK, IL, NQ, ... ;

 WAVEVECT('Q1');

 INCLUDE 'datafile'; { in data h = H + nq*q1 }

 END;

B-With two wave vectors

 ...

 WAVEVECT('Q1') = q1x, q1y, q1z ;

 WAVEVECT('Q2') = q2x, q2y, q2z ;

 ...

 { Atoms }

 ATOM('xx') = ... ;

 ...

 { Moments }

 MOMENT('Q1Mxx','xx','Q1') = ... ;

 MOMENT('Q2Mxx','xx','Q2') = ... ;

 ...

The data file model is :

 { IH IK IL NQ IS=-1 RAY SG }

 WAVEVECT('Q1');{ the Wave vector is Q1 for the next reflection }

 { a set with one nuclear and two Q1 satellite reflections }

 3 0 0 0 { Nuclear H }

 3 0 0 1 { Satellite H+q1 }

 3 0 0 -1 { Satellite H-q1 } 1 32.5 0.8

 { a single Q2 satellite reflection }

 WAVEVECT('Q2');{ the Wave vector is Q2 for the next reflection }

 3 1 0 -1 { satellite H-q2 } 1 41.6 1.2

 { a set of one Q2 satellite and one Q1 satellite reflection(s) }

 2 3 1 -1 { satellite H-q2 }

 WAVEVECT('Q1');{ the Wave vector is Q1 for the next reflection(s) }

 2 2 2 1 { satellite H+q1 } 1 27.1 2.4

 ...

C - Model description of a helimagnetic structure using the HELMOM macro statement

HELMOM is a name of a user defined macro that can be used to describe all helimagnetic structures. The use of the HELMOM macro is illustrated in the following template.

 ...

 MACROCALL HELMOM; { Load the HELMOM macro from the standard MXD library }

 ...

 ...

 HELMOM 'Q1Mxx', 'xx', 'Q1', xxFRM, xxOM1, xxCH1, xxPH1, xxEU1, xxEV1, xxAL1;

 HELMOM 'Q2Mxx', 'xx', 'Q2', xxFRM, xxOM2, xxCH2, xxPH2, xxEU2, xxEV2, xxAL2;

 ...

 ...

The use of the HELMOM macro is very convenient for the helimagnetic structures. OMi, CHi and PHi are the eulerian angles that define the orientation of an ellipse with the main axis EUi and EVi. When the Eulerian angles are zero Eu is along the X axis (of working reference system) an EVi along of Y one's. ALi is the circulation phasis along the ellipse that define the relative phasis of each modulated moment. FRM is the appropriate form factor to use. The three first parameters are: the name of the moment, the name of attached atom, and the name of the related wave vector.

 TC "I.7 – Becker and Coppens extinction management" \l 1 I.7 – Becker and Coppens extinction management

In MXD the Becker and Coppens extinction is very easy to use as can be seen below.

 { In first we can attach the Becker and Coppens extinction library }

 MACROLIB 'MXDLIB:EXTINC.MXL';{ attach the Becker and Coppens ext. macro lib. }

 ...

 { We must define the used wavelength }

 PARAM $LAMBDA = 0.89 {Wavelength in angstroem };

 ...

 { Define a data field for the average way in the crystal computed from

 a previously running absorption program }

 { If the crystal is spherical, we can use an "INCLUDE 'ABSTAB.MXD' to define

 a pseudo form factor with the absorption and average way tables (created

 by the execution of the VAX/VMS/DCL command MXD MXDLIB:ABSORB) }

 FFASSIGN E$TMU:-1; { Allocate a place at the end of form factor table }

 ...

 { call the extinction macro }

 EX$BECCOP 0 {neutron}, 0 {isotropic}, 1{crystal type 1},

 1 {Lorentzian distribution };

 { EX$BECCOP has defined the symbol E$Y has the current extinction

 coefficient }

 ...

 ...

 ...

 { The use in the data statement is : }

 DATA('name',(Scale, E$Y), ...) ...;

 ...

 END;

 { or for previously reduced data collection }

 DATA('name') = Scale, E$Y;

 TC "I.8 – Polarized neutrons management" \l 1 I.8 – Polarized neutrons management

MXD gives the full support for flipping ratio and polarization analyse experiments. In the next example we give a template data file to execute a least-squares on a not centered structure (Space group P-62m) with the coumpound MnRuAS (B.Chenevier thesys).

 TITLE ' Mn Ru As polarized neutrons (I.L.L. D3), Magnetic field //(010).';

 { account for the lambda/2 contribution }

 { SELNB = 0 for lambda and 1 for lambda/2 }

 PARAM LAMBDA = 0.924,

 $LAMBDA = SELECT(LAMBDA, LAMBDA/2);

 INCLUDE 'ABSTAB.MXD'; { include the absorption definitions

 of $ABS and E$TMU }

 FFASSIGN $ABS:-1, E$TMU:-2 { assign the two last column in the

 binary data files }

 PARAM $F2 = $F2POLA; { define the base to compute the

 extinction coefficient E$Y }

 { Use the Becker and Coppens Extinction correction }

 MACROLIB 'MXDLIB:EXTINC.MXL'; { Enable the use of extinction library }

 MACROCALL EX$BECCOP; { load the macro }

 { call the extinction macro }

 EX$BECCOP 0 {neutron}, 0 {isotropic}, 1{crystal type 1},

 1 {Lorentzian distribution };

 ...

 ...

 ...

 { Creates the file "DATA.MK3" for the FOURPL program of MK3 library }

 OPTION(MK3OUT)= YES, 0,0,1;

 ...

 ...

 ...

 { Unit Cell }

 CELL 6.5212,,3.6061,,,120;

 { space group }

 LATTICE 'P'; { Specify the lattice }

 SYMTRY('-6') = 0, -1, 0, 0, { specify the -6 axis }

 1, -1, 0, 0,

 0, 0, -1, 0;

 SYMTRY('MU') = 0, 1, 0, 0, { specify the Mu mirror }

 1, 0, 0, 0,

 0, 0, 1, 0;

 GENSPACE; { generate all the space group }

 ...

 ...

 ...

 { definitions of atoms variables }

 VARIABLE XMN =-0.419, XRU = 0.254;

 VARIABLE URU = 0.002, UMN = 0.004, UAS = 0.001;

 ...

 ...

 ...

 { definion of magnetic moment components }

 VARIABLE MN1 = 3.03, MN2 = 3.79;

 ...

 ...

 ...

 { Form Factor with references }

 (* FACTEUR DE FORME DE MN - SOURCE MNSB *)

 (* FACTEUR DE FORME DE RU - SOURCE FERH (SHIRANE ET AL., PHYS.REV (1964))-

 *)

 PARAM MNFRM(0,0.02) = (1,

 0.995, 0.985, 0.970, 0.945, 0.915, 0.875, 0.835, 0.785, 0.735, 0.680,

 0.635, 0.585, 0.535, 0.490, 0.450, 0.410, 0.375, 0.345, 0.315, 0.285,

 0.255, 0.230, 0.210, 0.190, 0.180);

 ...

 ...

 ...

 { Fermi Lengths - Source : International Tables }

 PARAM BMN = -0.373,

 BRU = 0.721,

 BAS = 0.658;

 ...

 ...

 ...

 { Crystallographic structure }

 { All the magnetic sites must be described }

 ATOM('MN11') = BMN,, 1, XMN, 0, 1/2, UMN;

 ATOM('MN12') = BMN,, 1, 0, XMN, 1/2, UMN;

 ATOM('MN13') = BMN,, 1, -XMN, -XMN, 1/2, UMN;

 { For the not magnetic atoms we use the space group information }

 ATOM('RU') = BRU,, 1/4, XRU, 0, 0, URU;

 ATOM('AS1') = BAS,, 1/12, 0, 0, 1/2, UAS;

 ATOM('AS2') = BAS,, 1/6, 1/3, 2/3, 0, UAS;

 ...

 ...

 ...

 { Magnetic structure definitions }

 MOMENT('MN11','MN11') = MNFRM, -MN1;

 MOMENT('MN12','MN12') = MNFRM, MN2;

 MOMENT('MN13','MN13') = MNFRM, MN2;

 ...

 ...

 ...

 { Compute (with sigma) the magnetization in Bohr magneton per formula unit }

 PARAM MRES = (MN1 + 2*MN2)/3;

 ...

 ...

 ...

 { Data collection definitions }

 { Proportion of LAMBDA / 2 intensity variable definitions }

 VARIABLE TOLS2 = 0.004;

 LIMITS TOLS2,0,1; { limited to the range 0..1 }

 UNFIXED TOLS2; { must be refined }

 { Definitions of the efficiences of the polarization

 for each wavelength }

 VARIABLE EFF=0.9, EFFL2 = 0.30;

 LIMITS 0,1, EFF, EFFL2;

 UNFIXED EFF; UNFIXED EFFL2;

 { Magnetic field on the sample }

 PARAM HAPPL = 4.5 {TESLAS};

 PARAM EFFE = SELECT(EFF, EFFL2); { define the polarization states }

 { for each wavelength }

 { define the two used polarization directions }

 NPOLADIR('100') = HAPPL, 0, 0, { Magnetic field components }

 EFFE, EFFE, { Spin up and down pol. efficiences }

 E$Y { secondary extinction correction }

 *SELECT(1, TOLS2); { with LAMBDA/2 effect }

 DATA('D3EXP',1, RAY=R, NPOLA=3{+/-}, WE=1/SG, SELNB = IS < 0)

 { Field to read on each line of data }

 IH, IK, IL, IS=-1, R, SG;

 NPOLADIR('100');

 (*

 { each measured reflection in the data file has two lines }

 2 4 2 { the lambda/2 reflection }

 1 2 1 1 3.5275 0.0022 { the lambda reflection }

 *)

 INCLUDE 'MRUA010POL.HKLSLS2'; { get the data file }

 END;

It is possible to handle many polarization direction data together. In this last case, the user must describes the magnetic moments components in a true arrangement for each direction of the applied magnetic field. It can take advantage of the predefined symbols $HX, $HY, $HZ that denote the current components of the magnetic field on the sample in the working space.

II – Theoretical MXD Background

In this section we describe the theoretical background of the MXD least-squares fitting process with all used related formulae. The used software technical are derived from the list management methods that the ordinary physicist users do not known.

II.1– Atomic structure factor summation conventions

MXD is written to handle all very complicated magnetic and/or modulated structures, so a general symmetry operator convention is taken :

For any magnetic or modulated (in position or in statistic population) atom, MXD applies the P1 space group. The space group information is not used when the atom carries a magnetic moment, or has an attached crystallographic modulation, the user must describe all equivalent atoms in these structures. The consequence is to give a particular name to each atom in the crystallographic site that is very convenient to describe any form of constraints on the modulations and/or magnetic moments.

For the normal atoms (not magnetic and not modulated) the user must give a modified population with the appropriate site multiplicity (see the first and second examples of the first chapter "Introduction to MXD").

In all following paragraphs of this chapter the next convention is used to fit with any printer restrictions :

 The summation operator below :

 final_value

 \

 \ ...EXPRESSION...

 /

 /_____________________

 index = initial, step

 is denoted as this :

 finalvalue

 SUMM ...EXPRESSION...

 index = initial, step

 and the step will be omitted if it is 1.

 An other convention is to use pi to denotes the pi number 3.1415927...

 TC "II.2 – Atomic structure factor" \l 1 II.2 – Atomic structure factor

The structure factor is computed with the formula :

 -> all_atoms -> -> ->

 Fn(h) = SUMM { PP * fn (h)*EXP(2*pi*i* H * r)

 j = 1 j j j

 2 -> ->

 * EXP(2*pi * < h ! beta ! h >) }

 j

 i is the square root of -1.

 with :

 j atomic number,

 r atomic position vector,

 PP atomic statistic occupancy factor (population),

 h true scattering vector,

 H attached reciprocal lattice vector,

 fn atomic (or nuclear for neutron) scattering factor,

 beta Thermal tensor.

 and :

 -> -> ->

 h = H + nq * q,

 beta = U / (b * b)

 ij ij i j

 where :

 q is the current wave vector, and nq an integer.

 U is the quadratic thermal vibration tensor and

 * * *

 b are the unit cell period vectors A , B and C .

 i

 TC "II.3 - Magnetic structure factor" \l 1 II.3 - Magnetic structure factor

The magnetic structure factor Fm has this expression :

 --> -> all_moments --> -> -> ->

 Fm (h) = SUMM MM * fm (h)*EXP(2*pi*i* H * r)

 j = 1 j j j

 The effective magnetic structure factor FM

 which gives the diffraction is :

 --> --> --> --> -->

 FM = [hn * (Fm * hn) - Fm] * (e * gamma)/(m * c)

 Where :

 fm is magnetic form factor,

 MM is the complex magnetic moment vector,

 hn is an unitary vector parallel to the h scattering vector,

 e is the electron electric charge,

 gamma is the neutron giro magnetic factor,

 m is the neutron heavy and

 c is the light speed.

 The complex magnetic moment is equal to the real magnetic moment if the

 computed reflection has h = H (no satellite reflection) or if the wave

 vector is flagged to be rational.

 If it is a satellite reflection of a helimagnetic structure, then the

 nq number is +1 or -1 and we can define :

 -> -> -> -> -> ->

 h+ = H + q and h- = H - q.

 For the h+ satellite the MM vector is the adjoint of M complex vector

 and for h- one's MM and M vector are the same. The M complex vector can be

 written as :

 -> -> -> ->

 M = (RMX + i*IMX) * x + (RMY + i*IMY) * y + (RMZ + i*IMZ) * z ;

 RMX, IMX, RMY, IMY, RMZ and IMZ are the real and imaginary part of

 the complex vector M used to describe any modulated magnetic structure.

 The physical magnetic moment at the r coordinate is given as :

 -> -> -> -> ->* -> ->

 m = M * EXP(2*pi*i* q * r) + M * EXP(-2*pi*i* q * r)

 ->* ->

 With M denotes the complex adjoint of the M vector.

 The x, y and z are the unitary vector of a work space defined from the

 unit cell by the MXD CELL or RCELL statements.

 The more current work space is :

 -> -> -> -> -> -> -> ->

 x // a, y in the plane a, b and z the direct product of x by y.

 TC "II.4 – Polarized neutron intensities" \l 1 II.4 – Polarized neutron intensities

In the polarized neutron case the total intensity is deduced from the

 four partial intensities I++, I--, I+- and I-+. If we define the reference

 system u, v, w where w is direction of the polarization magnetic field on

 the sample, then we can write :

 2

 I++ = | Fn + FMw | / 2,

 2

 I-- = | Fn - FMw | / 2,

 2

 I+- = | FMu + i * FMv | / 2,

 2

 I-+ = | FMu - i * FMv | / 2.

 In these formulae the FMu, FMv and FMw are the components of the

 magnetic structure factor vector FM and Fn is the atomic (nuclear) structure

 factor. The formulae (3) and (4) are not very computing convenient then MXD

 use following form instead :

2 -> --> -->

 I+- = | FMuv + (hn, RFM, IFM) | / 2,

 2 -> --> -->

 I-+ = | FMuv - (hn, RFM, IFM) | / 2,

 where :

 -> ->

 FMuv = | FMu * u + FMv * v |.

 -> -> -> -> -> ->

 (a, b, c) denotes the mixed product of three vectors a, b and c.

 TC "I.5 – Modulated atomic structure management" \l 1 I.5 – Modulated atomic structure management

The atomic (nuclear for neutron) modulation management of MXD is based on the normal 3 Dimension space use but it is possible to use an other approach by the use of appropriate user MXD macros. The basic modulation description use the complex displacement vector U and the complex occupancy probability factor P are defined :

 -> -> -> ->

 U = (RUX + i*IUX) * x + (RUY + i*IUY) * y + (RUZ + i*IUZ) * z ;

 with the real and imaginary components RMX, RMY, RMZ and IMX, IMY, IMZ.

 P = Pmd * EXP(i*Pph)

 The physical displacement and population at the r coordinate are given

 as :

 -> -> -> -> ->* -> ->

 u = U * EXP(2*pi*i* q * r) + U * EXP(-2*pi*i* q * r)

 -> -> * -> ->

 p = P * EXP(2*pi*i* q * r) + P * EXP(-2*pi*i* q * r)

 ->* ->

 With U denotes the complex adjoint of the U vector

 *

 and P the complex adjoint of P scalar.

 For a modulated atomic population the atomic structure factor is given

 by :

 -> -> -> ->

 for h+ reflection (h = H + q) :

 --> all_atoms * -> -> ->

 Fn(h+) = SUMM { P * fn (h)*EXP(2*pi*i* H * r) * <thermal

 factor>}

 j = 1 j j j

 -> -> -> ->

 for h- reflection (h = H - q) :

 --> all_atoms -> -> ->

 Fn(h-) = SUMM { P * fn (h)*EXP(2*pi*i* H * r) * <thermal

 factor>}

 j = 1 j j j

 These formulae have the same form as their equivalent for helimagnetic

 structure. but in the case of a unique q wave vector in a modulated

 displacement and occupancy probability the formulae are :

 -> -> all_atoms -> -> -> ->

 Fn(H + nq*q) = SUMM { PP * fn (h)*EXP(2*pi*i* H * r) * g (h) }

 j = 1 j j j nq,j

 With :

 -> -> -> ->

 g (h) = G (h) + P * G (h) + P * G (h),

 n,j n,j j n-1,j j n+1,j

 ->

 G (h) = EXP(i*[-n*phi + |n|*pi/2]) * J (2*rho),

 n,j j |n| j

 -> ->

 rho * EXP(i*phi) = 2*pi* h * U ,

 j j j

 and J denotes the n'th first kind Bessel function.

 n

The G function is used only in the unique q wave vector case; in all other cases the user must use the DISCRET atomic model to correctly handle the multi wave vectors structures.

 TC "II.6 – Calculated and observed values" \l 1 II.6 – Calculated and observed values

The value compared for a given observation is defined by the DATA statement for each Data collection.

In all cases the Scale factor is applied to the final calculated value found to compare it to the given observation. Therefore, scale factor is always find with one (1) least square cycle only.

You have four (4) kinds of Data Collection :

 1. Observed intensity data (RAY).

 2. Observed squared structure factor (F2).

 3. Observed structure factor (SF).

 4. Polarized neutron diffraction data.

 TC "II.6.1 - Intensities" \l 1 II.6.1 - Intensities

 The used formula is :

 all [hkl] in sets 2 --> 2

 C = Scale * SUMM mul * (Cn * | Fn | + Cm * | FM |)

 l l l l l l

 Where mul is the multiplicity of the l'th reflection,

 Cn and Cm the related extinction correction factors (default 1),

 and scale the current scale factor.

 TC "II.6.2 - F2 Observation Data" \l 1 II.6.2 - F2 Observation Data

 2 --> 2

 C = Scale * (Cn * | Fn | + Cm * | FM |)

 Where Cn and Cm the related extinction correction factor (default 1),

 Scale the current scale factor.

 TC "II.6.3 - Structure Factor Based Observation Data" \l 1 II.6.3 - Structure Factor Based Observation Data

 2 --> 2 1/2

 C = Scale * (Cn * | Fn | + Cm * | FM |)

Where Cn and Cm the related extinction correction factors (default 1), Scale the current scale factor.

 TC "II.6.4 - Polarized neutron case" \l 1 II.6.4 - Polarized neutron case

It is a special case. In fact, you can define a neutron polarized data collection as based on SF, F2 or RAY (Intensity). But in general the RAY mode is more convenient. If you have a flipping ratio data collection, the scale factor must be fixed to 1.

 You can use the different formulae as below :

 If you have a polarizer and an analyser on your goniometer :

 IC = Cp++ * I++, for ++ measured reflection,

 IC = Cp-- * I--, for -- measured reflection,

 IC = Cp+- * I+-, for +- measured reflection,

 IC = Cp-+ * I-+, for -+ measured reflection,

 If you have not an analyser on your goniometer :

 IC = IC+ = Cp++ * I++ + Cp+- * I+-, for + measured reflection,

 IC = IC- = Cp-- * I-- + Cp-+ * I-+, for - measured reflection,

 IC = IC+ / IC- for flipping ratio in F2 or Sf data collection and

 all ref. all ref

 C = Scale*{ SUMM mul * IC+ } / { SUMM mul * IC- }

 l l l l l l

 for flipping ration in Ray data collection.

Where the Cpxx factor are the related correction factors including flipper efficience factor and/or extinction coefficient.

Except for the last case, C is given by the next formulae :

 all ref.

 C = Scale * SUMM { mul * ICxx } for RAY based data collection,

 l l l

Where ICxx is any IC intensity (xx = +, -, ++, --, +-, -+, +/-).

 C = Scale * Icxx for F2 based data collection,

and

 1/2

 C = Scale * | Icxx | for SF based data collection.

 TC "II.7 – Least-Squares formulae" \l 1 II.7 – Least-Squares formulae

Now we have defined the computed quantity C for each p'th observation value O. Each observation has related weight We and sigma Sig.

The total number of reflections (across all defined data collections) is noted Nobs and the total number of fitted variable is Nvar (across all defined diagonal blocks).

If the i'th fitted variable are denoted qi, then we have the next definitions :

With the standard weight given as We = 1 / Sig .

 Nobs 2

 SUMM { (O - C) * We }

 2 p p p p

 CHI = --------------------------------

 Nobs - Nvar

 1/2

 (Nobs 2)

 (SUMM { (O - C) * We }) The weighted

 (p p p p)

 R = (-------------------------------) Least Square R Factor

 w.lsq (Nobs 2)

 (SUMM { O * We }) "WEIGHTED LSQ R"

 (p p p)

The crystallographic weighted R factor is given by th formula :

 Nobs

 SUMM { |O - C | * We } The weighted

 p p p p

 R = ------------------------------- Crystallographic R Factor

 w.abs Nobs

 SUMM | O * We | "WEIGHTED ABS R"

 p p p

The unweighted versions of these R factors are deduced from these ones by the change of We to 1.

The least square process consists (for each diagonal block) in :

 1/ Building the matrix coefficients :

 d C d C

 Nobs p p 2

 M = SUMM ------- * -------- * We ,

 i,j p d Q d Q p

 i j

 d C

 Nobs p

 B = SUMM (O - C) * We * -------

 i p p p p d Q

 i

 2/ Solving the linear system :

 || M || * || delta_q || = || B ||,

 -1

 with the matrix definition || N || = || M || ,

 the system becomes :

 || delta_q || = || N || * || B || .

 3/ Applying the variable shift delta_q to the q variable :

 Q = Q + DMP * delta_q

 i i i

 where DMP is the dampening factor.

 4/ Computing the variable and related function sigma as this :

The sigma of each variable :

 2 1/2

 sig = [N * CHI] ,

 i i,i

The correlation cofficients are computed as :

 (2) 1/2

 (N)

 (i,j)

 C = (----------------)

 i,j (N * N)

 (i,i j,j)

The function dependant (MXD Variable Parameter) :

 f(Qi1,Qi2...Qin) have the sigma given as :

 2 Nvar Nvar d f d f

 sigma(f(Q1,..Qn) = SUMM SUMM C * ------ * ------ * Sig * Sig .

 i j i,j d Q d Q i j

 i j

III – Syntax Element of the MXD language

The description of the syntax of the various statement primitives of MXD use some common notations and rules that are defined below.

 TC "III.1 – Keywords notations" \l 1 III.1 – Keywords notations

MXD statements are based on the use of reserved words (so called keywords), which cannot be used for any other purpose. All the keyword are noted in CAPITAL letters in this manual, but, in a real data file MXD proceeds correctly with minor characters because, except in the string character input MXD translate in capital all input letter.

 CENTER tells MXD to operate in centered structure mode (centered space

 group). Our notation is CENTER but center is also legal.

 TC "III.2 – Primitive parameters notations" \l 1 III.2 – Primitive parameters notations

 The words surrounded by the bra-ket characters "<" and ">" denote a symbolic

 form. We use some symbolic notations :

III.2.1 - Numeric Expression Notation.

 <c#n> denotes any immediatly evaluable numeric expression

 and <#n> denotes any numeric expression which is not necessarily immediatly

 evaluable because some special parameter or least-square variable can be

 referenced in this expression.

 The Unit Cell definition and Atome primitives give a good example of the

 difference:

 CELL <c#a>, <c#b>, <c#c>, <c#alpha>, <c#beta>, <c#gamma>;

 Is the precise syntax of the Cell primitive. The unit cell parameters can

 be the result of some computing but they are fixed.

 ATOME('Fe23')= <#rdif>, <#idif>, 1,

 <#xfe23>, <#yfe23>, <#zfe23>, <#ufe23>;

 This primitive creates an atom with the name Fe23, the complex scattering

 factor <#rdif>,<#idif>, the coordinates <#xfe23>,<#yfe23> and <#zfe23>, and

 the isotropic thermal factor <#ufe23>. All atom parameters can be

 variable-dependant.

III.2.2 - String Constant Expression Notation.

 <s#name> denotes a string expression parameter .

 Example:

 TITLE <s#title_string> ; define the given string as the title of the present

 work.

 <l#val> denotes a character specification parameter.

 A character specification can be a single character or a string where

 the first character is used as this :

 Example:

 LATTICE <l#lattice> ; { can be used }

 LATTICE R; {,} LATTICE 'RHOMBOEDRIC'; { and } LATTICE 'r'; {or}

 LATTICE 'R';

 Give the same information : The crystal lattice is a Rhombohedral lattice.

III.2.3 - Identifier Notation.

 <ident> denotes an legal identifier name.

 An identifier name is a string of alphanumeric character where the first one

 is an alphabetic character. An identifier name can have any size but only

 the first eight character are used, then, two identifiers with the same

 first eight characters are not distinguished.

 The alphabetic characters are:

 the letters A To Z, $, the underline character "_" and #.

 The alphanumeric characters are the digits, and the alphabetic characters.

III.2.4 - Expression Operators.

 The list of more usual operators and standard function is given below:

 <#e1>+<#e2> addition operator.

 <#e1>-<#e2> substract operator.

 <#e1>*<#e2> multiply operator.

 <#e1>/<#e2> divide operator.

 <#e1>^<#e2>

 or <#e1>**<#e2> exponential operator.

 -<#e> unary minus operator(sign change

 operator).

 +<#e> unary plus operator(no effect).

 SIN(<#e>) sine.

 COS(<#e>) cosine.

 TAN(<#e>) tangent.

 LOG(<#e>) natural logarithm.

 EXP(<#e>) exponential.

 ASIN(<#e>) arcsine.

 ACOS(<#e>) arccosine.

 ATAN(<#e>) arctangent.

 TANH(<#e>) hyperbolic tangent.

 SQRT(<#e>) square-root.

 ATAN(<#eb>,<#ea>) Phasis of a + i*b.

 TC "III.3 – Input data form" \l 1 III.3 – Input data form

The MXD input format is free. The primitive names with there related parameters (so called statement) can be split in many line, and many statements can be written on the same input line. Each statement is ended by a semicolon character. This is a general rule for any MXD statement. The first part and/or the last part of the input line can be ignored by MXD by the use of the F option of the PRAGMA primitive.

 TC "III.4 – Optional and necessary primitive parameters" \l 1 III.4 – Optional and necessary primitive parameters

Many primitives can have a variable number of parameters. When a parameter is optional the parameter is surrounded by the two characters "[" and "]". Then the exact syntax of the CELL primitive use description is:

CELL <c#a> [, [<c#b>] [, [<c#c>] [,[<c#alpha>] [, [<c#beta>]

 [, [<c#gamma>]]]]]] ;

The <c#a> parameter must be present in the CELL primitive, the others are optional.

CELL 4.04; { for a cubic unit cell of 4.04 angstroem }

or

CELL 8.31,,12.43,,,120; { for an hexagonal unit cell with a=8.31,c=12.43 }

In all the next statement syntax description the notation is simplified by the suppression of the all internal bra-ket characters as below :

CELL <c#a> [,<c#b>, <c#c>, <c#alpha>, <c#beta>, <c#gamma>];

 TC "III.5 – Alternative choice notation" \l 1 III.5 – Alternative choice notation

The source listing of the current MXD data file can be set off or on by the two MXD statements :

PRAGMA L-; { Set listing off }

 ... { this part of the MXD data must not be showed in the listing }

PRAGMA L+; { Set listing on }

The user must define a choice "+" or "-". So our notation for this form of this statement is :

PRAGMA L {+|-};

The "|" character separates each possibility of choice and "{" and "}" indicate the begining and the end of the choice list.

III.6 – General MXD statement form

We describe below the use of each physical MXD primitive to form correct MXD statements. There are three types of MXD statements :

The primitive statements, the assignation statements, and the structured statements (for special use).

A primitive statement begins by the primitive keyword and following its related parameter list that can be empty (depending of the primitive). The different parameters must be separated by a comma “,” and ended by a semicolon character(";").

An assignation statement has the general form :

<ident> = <expression> ;

The expression must match with the identifier type.

This statement is used to assign a new value to a constant parameter or to change an initial value of a variable, this is specially used to set a variable at this last refinement value. First, we give the legal syntax of the statement and after, all related explanations or particularities.

IV - Data Management Primitives of MXD

The MXD data file organization is the technique to have a well structured and easy to understand data structure. The MXD data management primitives help the user to write well suited data file.

 TC "IV.1 - Heading (TITLE) statement" \l 1 IV.1 - Heading (TITLE) statement

You can give a title to a MXD job by use of the statement:

TITLE <s#title> ;

The character string <s#title> is printed on the first line of all next listing page. Here is an Example:

TITLE 'Fitting of U_Alpha room temperature structure';

 TC "IV.2 The PRAGMA statement" \l 1 IV.2 The PRAGMA statement

If you want to modify some working mode(s) the MXD data compiler (MXDCMP), you must use the statement PRAGMA, the syntax is given below :

PRAGMA <opt1> [, <opt2>, <opt3>, ...] ;

Each specified option <optn> has the form <l#letter> and the appropriate parameter(s) must be an element of th list below :

1. L[{+|-}][:<n>]
To Enable/Disable the MXD source listing.

2. D{+|-}
To Enable/Disable the DATA interpretation listing.

3. M{+|-}
To Enable/Disable the MACRO expansion listing.

4. F:<nf>:<nl>
To set the source data column range nf..nl.

5. N{+|-}
To enable/Disable fatal error on not existing file.

IV.2.1 The L Option For List On or Off

The L option commands the MXD source listing output. “+” enables the listing output and “-” disables it. <n> must be specified to change the current INCLUDE level to disable the output.

The default is “L-:1” at the MXDCMP start time, but in the normal use of the MLS/MLSC commands this default is changed to L+:1 by the statement "PRAGMA L+:1;" MXD initialization performed (by the file “mxd_env.std” automatically active d when MXD start).

The include level for source listing n is the nested level limit to really output the source listing.

Example :

{ Basic file a.mxd file b.mxd file c.mxd }

{ nested level = 1 }

INCLUDE 'b.mxd'; -------> { nested level = 2 }

 { no listing because

 the default is L+:1 }

 ...

 INCLUDE 'c.mxd';---------> { nested level = 3 listing

 off the first call and

 on the second call }

 ...

 ...

 { listing enabled } <---- ENDFILE;

 PRAGMA L:2;

 { listing on for this file not for c.mxd }

 INCLUDE 'c.mxd';

 ...

 ...

 PRAGMA L:3;

 { the first part of the file c.mxd will be

 output on the listing }

 INCLUDE 'c.mxd';

 ...

{ all next <------- ENDFILE;

 included file

 will be output on

 the listing }

 ...

 TC "IV.2.2 - The D Option For Data Interpretation Listing" \l 1 IV.2.2 - The D Option For Data Interpretation Listing

The D+ enables the DATA interpretation listing and D- disables it. If it is enabled then the DATA statement prints each interpreted reflection. It can be useful in some complicated data reduction process. The default is D-.

IV.2.3 - The M Option For Macro Expanssion Listing

The M{+|-} option Enables or Disables the listing of the really executed statement during a macro interpretation. his option must be used to debug a macro. The default is M-.

IV. TC "- The N Option For Not Existing File Error Handling" \l 1 - The N Option For Not Existing File Error Handling

When MXD tries to open a file by the INCLUDE, CHAINE, or OPENFILE statement, if the file cannot be opened, the default (N-) effect is to give no difference between a non existing file and an empty existing file. If the N+ option is enabled, then the not existing file fatal error is generated. It is a good pratique to specify the N+ option when the user include some important file as space groupe or form-factor definitions. The symbol $STATUS can be used to know the success of the INCLUDE statement as this:

INCLUDE 'file.MXD',N-;

IF $STATUS = 0 THEN

 { action when success }

 ELSE

 { action when open fails }

 ENDIF;

 TC "IV.2.5 - The F Option For Source Input Format" \l 1 IV.2.5 - The F Option For Source Input Format

The F option is used to ignore some column in the mxd source file (the user written MXD statements). <nf> is the first column number and <ln> is the last one. Only the column <nf> to <nl> will be read by the MXD compiler. Example to read A80 punched cards format with sequence number in the comumn 73 to 80 :

PRAGMA F:2:72;

We ignore the first character of each line and all characters after the 72'th column that can be used to line sequence number. The default is PRAGMA F:1:120;

IV.3 - INCLUDE and CHAINE statements

If you have a set of MXD data line that is not particular to your problem, you can use the INCLUDE statement. The syntax of INCLUDE and CHAINE statement is :

{INCLUDE | CHAINE } <s#filename> [, <opt1>, <opt2>, ...];

The INCLUDE statement directs the input stream to the filename source MXD file with keep the current source context. You can use up to four (4) nested INCLUDE statements in interactive mode and three (3) in automatic run mode. Each INCLUDE statement increases by one the include level and each end of file (or ENDFILE statement) decreases by one the current include level. The current set of option (see PRAGMA statement) is copied in the included file context and, modified by the given option(s) <optn> if given. When the control is returned to the caller source file (where is the INCLUDE statement), the previous options are restored.

The CHAINE statement directs the input stream to the filename source MXD file without keeping the current source context. The current set of option is not saved, it can be modified by the given option(s) <optn>.

 TC "IV.4 ENDFILE statement" \l 1 IV.4 ENDFILE statement

The ENDFILE statement is equivalent to the true end of file. When it is reached, The MXD compiler, as with a true end of file, closes the current MXD source file to return to the previous context. The ENDFILE syntax is :

ENDFILE ;

 TC "IV.5 - The MXD source input file logic" \l 1 IV.5 - The MXD source input file logic

When MXDCMP (the Data Compiler) is started, during the initialize time, it looks for a data file with the name MXD.INI . If this file does not exist, then the terminal mode is enabled and the MXDCMP prompt is displayed on the user terminal. In this case, the default PRAGMA is :

PRAGMA L-:1,D-,M-,F:1:120;

If the MXD.INI file exists, then an automatic INCLUDE to this file is performed. Below, we show a typical MXD.INI file :

 { auto start comment }

 INCLUDE MXDLIB:'MXD.OPT'; { to define all particular symbols }

 CHAINE 'userfile.MXD',L+; { to begin the mxd file interpretation }

 { and turn on the source listing }

 The MXDCMP program has a limitation of four (4) simultaneous open

 source files. Therefore in interactive mode you can have really four (4) of

 nested INCLUDEs, but in the automatic mode (general case) you can use only

 three (3) nested INCLUDEs because you must take the main source data file in

 the four files.

 With these statements you can write well efficient data files.

 Examples :

 If you have many data that use the same space group Ia3d you can create

 the file IA3D.MXD as this :

 { SPACE GROUP IA3D }

 LATTICE 'I'; CENTER; { set lattice and center at origin }

 SYMTRY('3 ') = 0, 1, 0, 0,

 0, 0, 1, 0,

 1, 0, 0, 0; { matrix of operator (3! 0 0 0)

 }

 SYMTRY('4.1') = 0,-1, 0, 1/4,

 1, 0, 0, 3/4,

 0, 0, 1, 1/4; { matrix of operator (4! 1/4 3/4 1/4)

 }

 GENSPACE; { generates the full space group }

 { in the each main mxd source file }

 INCLUDE 'IA3D.MXD'; { include the space group definition }

 You can also use this method to use a collection of form factor files

 to have only one version of each.

IV.6 THE APPLICATION PROGRAM OPTION SPECIFICATIONS.

 To give some directive to the application program MXD as a special

 statement OPTION that can be used to transmit some numeric values to the

 application program. The syntax is given as :

 OPTION(<c#optionnumber>) =

 <c#val1> [, <c#val2> [, ... <c#val8>]] ;

 A maximum of eight (8) values can be transmitted to the application

 program. The standard options as defined in the MXD.OPT file has integer

 constant value and may be used to give more readely MXD data file.

 The standard options for MXDLSQ are defined in the file MXD.OPT (in

 MXDLIB: for VAX/VMS system) with some defined value as this :

 PARAM SHORTLST = 0, NCYCLE = 1;

 PARAM NO = 0, YES = 1, ALWAYS = 2;

 Some option number are reserved as global option to all application program.

 These options are :

 Option number Option name in MXD.OPT and action.

 -1 LARGLINE line size in 80/132 for NO/YES (or

 0/1).

 0 SHORTLST short listing if YES (or 1).

 as this :

 OPTION(LARGLINE) = YES; OPTION(SHORTLST) = YES;

 enables the 132 columns mode for the listing.

 The default is YES for the option SHORTLST for the MXDLSQ program and

 the LARGLINE default is NO, but, then SHORTLST is negated (NO value) the

 option LARGLINE is always reset to YES for the present version of MXDLSQ.

V - Physical primitives of MXD

 V.1 THE UNIT CELL DEFINITION STATEMENT.

 There are two Primitives to form a cell definition statement:

 CELL <c#a> [,<c#b> ,<c#c> ,<c#alpha> ,<c#beta> ,<c#gamma>] ;

 RCELL <c#a> [,<c#b> ,<c#c> ,<c#alpha> ,<c#beta> ,<c#gamma>] ;

 The parameters of CELL or RCELL primitives are the direct or reciprocal

 unit cell parameters. The alpha, beta and gamma values can be given in

 decimal degrees or cosine value. For the primitive RCELL, the unit cell

 must be a Rhombohedral unit cell. These statements are used to define the

 unit cell and also, for magnetic and/or modulated structures the working

 space axis X, Y, Z.

 If we denote U o V as the vectorial product of U by V.

 For the CELL statement form :

 X // a,

 Y perpendicular to X in the (a,b) plane,

 and Z = X o Y.

 For RCELL statement form :

 X + Y + Z // (111),

 X o Y, Y o Z, and Z o X are three vectors inside the plane [111].

 These two definitions of the Direct Unitary and Orthogonal reference

 all symmetry relation are easy to write, specialy for Rhombohedral system if

 you use the RCELL primitive form.

 In a MXD data file you must have only one CELL or RCELL primitive.

 The unit cell definition statement performs :

 -Computing of reciprocal or direct unit cell parameters.

 -Build the TMD and TMR matrixs defined below :

 (X,Y,Z) = ((TMD)) * (x,y,z).

 (rh,rk,rl) = ((TMR)) * (H,K,L).

 Where the vector (x,y,z) is in fraction of unit cell parameters,

 the vector (H,K,L) is a reciprocal lattice vector,

 the vector (X,Y,Z) is in angstroem(s),

 and the vector (rh,rk,rl) is in 1/angstroem(s).

 The next numeric symbol are also defined:

 $A, $B, $C,

 $ALPHA, $BETA, $GAMMA are the direct unit cell parameters,

 $#A, $#B, $#C,

 $#ALPHA, $#BETA, $#GAMMA are the reciprocal one's,

 $TMD11, $TMD12,$TMD13,.. and so one ... until $TMD33

 are the matrix elements of TMD,

 $TMR11, $TMR12, ... until $TMR33

 are the matrix elements of TMR.

 All these parameters are automatically declared by MXD on the Unit Cell

 Definition Statement execution. This virtual declaration is equivalent to:

 PARAM <ident> = <c#exp> declaration.

V.2 DECLARATIONS AND ASSIGNEMENT STATEMENTS.

 The PARAM and VARIABLE primitives are used to define one (or many)

 identifier(s) as (a) parameter or variable identifier(s). A Variable is a

 _______ _____ _________ _____

 numeric identifier with an initial value but Not an evaluable value because

 the MXD Compiler cannot know the actual value of a MXD variable. A MXD

 Parameter can be:

 A constant string expression <s#anything> to use of Compiler.

 A constant numeric expression <c#anything> to use by Compiler or the

 application program.

 A constant array definition to use has form factor table.

 A variable expression <#anything> for use by the application program.

V.2.1 Declaration And Assignement Of Variable.

 A variable is a numeric object used as variable by the least-squares

 programs, the VARIABLE declaration creates (a) variable identifiers . The

 variable assignement can be used to change the initial value and/or sigma

 (given in the related declaration). The variable declaration as this syntax

 :

 VARIABLE <ident1> [= <c#v1> [: <c#s1>]]

 [, <ident2> [= <c#v2> [: <c#s2>]], ...] ;

 Where <c#vn> is the initial value of the n'th variables, and <c#sn> is the

 related one initial sigma.

 Define ident1, ident2, etc ... as VARIABLE name.

 The initial value and sigma are zero (by default).

 Each Variable must be declared by a VARIABLE STATEMENT declaration before

 any reference to it.

 One VARIABLE statement can be defined one or many Variable identifier.

 The variable assignement changes the initial value of a variable. Its

 syntax is :

 <vident> = <c#init_value_expr> [: <c#init_sigma_expr] ;

V.2.2 Declaration And Assignation Of Parameters.

 The parameter declaration is as below :

 PARAM <proposition1> [, <proposition2>, <proposition3> ...] ;

 And an assignement of constant parameter syntax is :

 <proposition> ;

 A <proposition> can be :

 <ident> = <s#expr> { for string declaration/assignation }

 <ident> = <c#expr> { for numeric constant declaration/assignation }

 <ident>(<c#org>, <c#step>) =

 (< list of <c#exp> >); { for numeric array }

 <ident> = < var-expr> { for variable parameter declaration only }

 In string constant case.

 <ident> = <s#exp> to define a string constant parameter.

 Example :

 PARAM DATE = ' 05-OCT-84 '; { define DATE as the string ' 05-OCT-84

 ';

 TITLE DATE!!' MY DATA FILE '; { use the date identifier

 to set the title as :}

 { TITLE ' 05-OCT-84 MY DATA FILE '; }

 In numeric constant case.

 <ident> = <c#exp> to define a numeric constant parameter.

 Example :

 PARAM BU = 0.85; { set BU as the fermi length of U atom }

 In numeric variable case.

 <ident> = <#vexp> to define a variable parameter.

 Example :

 PARAM MFE3 = - (MFE1 + 2 * MFE2); { if FE1 is in 4A site,

 FE2 is in 8J site,

 FE3 is in 4B site,

 fixe the resultant moment

 to zero }

 This is the solution to allow any constraint relation. The assignation

 statement is illegal for variable parameter because we must not change a

 variable parameter definition.

 In numeric array constant case.

 <ident>(<c#org>, <c#step>) = (<c#exp1> [, <c#exp2>,

 <c#exp3>,etc... <c#expn>]);

 To define an array parameter.

 In this last case, org is the subscript origine value, step is the step of

 the subscript, and exp1,exp2...expn are the succesive value began at the

 subscript org.

 Example :

 { X-RAY FORM FACTOR OF THE IRON , SOURCE : INTERNATIONAL TABLE }

 PARAM FEFRX(0,0.05) = (

 26.00, 25.30, 23.68, 21.85, 20.09, 18.40, 16.77);

 { THIS TABLE IS CONTINUED WITH A STEP OF 0.1 (1/Angstroem) }

 { THIS IS REALIZED WITH AN ASSIGNATION STATEMENT }

 FEFRX(0.4,0.1) = (13.84, 11.47, 9.71, 8.47, 7.60, 6.99,

 6.51, 6.12, 5.74, 5.39, 5.03, 4.69);

 In this Example we can see the use of a Form-factor definition and The use

 of an assignation to append some new value at an existing array parameter.

 The org value in assignation can be overlap the existing definition, then

 the old end of list is discarbe to have a conform definition, with an

 increased subscript.

 A form factor reference has two forms :

 A variable form as <ident> and a subscripted form as <ident>(<c#subscript>),

 The variable form is used to define a scattering factor, the interpolation

 is performed by the DATA REDUCTION statement. This reference as the

 attributs of a variable expression.

 The subscripted form is used to give the interpolated value as a numeric

 constant value, in this case the subscript must be a numeric constant

 expression.

V.3 VARIABLE MANAGEMENT STATEMENTS.

V.3.1 FIXED And UNFIXED Statements.

 We can lock one or any number of variable with the statement :

 FIXED <ident1> [, <ident2> [, <ident3> ...]] ;

 and unlocked some already locked variable with the statement :

 UNFIXED <ident1> [, <ident2> [, <ident3> ...]] ;

 In the two cases <ident1>, <ident2> ... are variable names. By default a

 variable is always not locked.

V.3.2 Variable Range Specification.

It can be usefull to specify an allowed range to a variable. The LIMITS statement enable the user to specify a particular range at one or many previously defined variables.

 The possible syntax are :

 LIMITS <ident>, <c#v1>, <c#v2> ; { for one variable }

 LIMITS <c#v1>, <c#v2>, <ident1> [, <ident2> ...] ;

 Here v1 and v2 constant expressions can be :

 v1 = lower limit, v2 = upper limit

 v1 = modulo value, v2 = lower limit.

 Example :

 LIMITS V, 3, 12 { V must be in the range [3,12] };

 { A1, A2 and A3 are angle in the range [-180,+180[}

 LIMITS 360,-180, A1, A2, A3;

V.3.3 Diagonal Block For Least-square Program.

For Many purposes, it can be usefull to suppress the correlation between two (or more) groups of variables. This is realized by the next below statement

 :

 LSQBLOCK(<s#blkname>) = <c#dampening_factor_of_this_block>

 [, <#fdyn>] ;

The blkname must be unique in all blkname in the data. The general expression <#fdyn> can be used to give a dynamic dampening correction factor that can be used to define a convergence acceleration algorithme. The effective dampening factor is the product of two once if <#fdyn> is given.

It is also the method to set a dampening factor for a full matrix refinement. The use is demonstrates below :

... variables definitions of the first lsq-block ...

 LSQBLOCK('BLOCK_1') = 0.5; (* dampening factor is 0.5 *)

... variable definitions of the second lsq-block ...

 LSQBLOCK('BLOCK_2') = 0.8; (* dampenig factor is 0.8 *)

... next variable definition ...

The last variables are in any defined lsq-block, in this case, the least-square program will create an lsq-block as below :

 LSQBLOCK('BLK.MAIN') = 1.0;

V.4 THE ATOM DECLARATION STATEMENT.

 ATOM

 or (<s#name>) = [<#rdif>, <#idif>, <#pop>, <#x>, <#y>, <#z>,

 CATOM

and the other successive parameters :

 <#dbiso>] ;

or in anisotropic form :

 <#u11>, <#u22>, <#u33>, <#u12>, <#u13>, <#u23>] ;

With the ATOM primitive, the coordinates x,y and z are in unit cell parameter fraction, and with the CATOM primitive in Angstroem(s) in the work reference as defined by the CELL definition statement. The dbiso parameter must be the isotropic U (default mode) or if the statement "DEBYEMD;" is used, the DEBYE FACTOR B. The anisotropic Uij parameters as in Angstroem**2 unit, along the crystallographic reference with ATOM primitive, and along the work reference with CATOM.

All the atom name <s#name> must be unique in the atom data list.

All the parameter fields can be omitted as this :

 Example :

 ATOM('FE3+1') = ,,,x,y,z; { define an fe atom for a pure magnetic structure determination }

V.5 THE WAVE VECTOR DECLARATION STATEMENT.

A wave vector is used to describe a magnetic or structural periodic modulation. A good example of this is the helimagnetism.

The wave vector declaration is realized with the WAVEVECT primitive as below :

 WAVEVECT(<s#name>) = <c#qx>, <c#qy>, <c#qz> [, <cl#r>] ;

Where qx, qy, qz are the components of the wave vector in the reciprocal lattice reference. If 'R' is omitted the wave vector.

The vector name must be unique in all wave vector name.

V.6 THE POLARIZED DIRECTION DECLARATION STATEMENT.

A polarization magnetic field direction must be given for all polarized neutron computing :

This declaration is realized with the NPOLADIR primitive as below :

 NPOLADIR(<s#name>) = <#Hx>, <#Hy>, <#Hz>

 [<#Ef+>, <Ef->, <#Cpol>] ;

Where Hx, Hy, Hz are the components of the magnetic field in the working space reference system. The Ef+ and Ef- are the polarization efficiencies defined as this:

When polarization is +, The flux is really :

 K * [Ef+ neutrons_up + (1 -Ef+) neutrons_down]

When polarization is +, The flux is really :

 K * [Ef- neutrons_down + (1 -Ef-) neutrons_up]

The Cpol parameter is the extinction correction coefficient expression. The parameters can be general expression to can be adjust with the current orientation of the crystal.

The direction name must be unique in all direction name.

V.7 THE MAGNETIC MOMENT DECLARATION STATEMENT.

The declaration of a magnetic moment has the below syntax :

 MOMENT(<s#name>, <s#atome> [, <s#wave>]) =

 [<#magndif>, <#rmx>, <#rmy>, <#rmz>,

 <#imx>, <#imy>, <#imz>] ;

 Where magndif is the magnetic scattering, rmx,rmy and rmz are the real part

 of the magnetic moment, and imx,imy,imz the imaginary part of the magnetic

 moment only usable for the modulated magnetic structure.

The magnetic moment components are in Bhor Magneton unit.

The moment name must be unique in all the moment list, <s#atome> is the name of the atom where the magnetic moment is located, and <s#wave> is the related wave vector name, if the magnetic moment is modulated.

It is possible to define any number of moment on the same atom to describe any multi wave-vector structure.

The magnetic moments are always given in the work reference.

V.8 THE MODULATED DISPLACEMENT DECLARATION STATEMENT.

The declaration of a structural modulation has the below syntax :

 MDSDSP(<s#name>, <s#atome>, <s#wave>) =

 [<#mpop>, <#phpop>, <#rux>, <#ruy>, <#ruz>,

 <#iux>, <#iuy>, <#iuz>] ;

Where mpop and phpop are the magnitude and phasys of a modulated population, and rux, ruy and ruz are the real part, and iux, iuy, iuz the imaginary part of the modulated displacement.

The displacements is always given in the work reference and in Angstroem unit.

The moment name must be unique in all the moment list, <s#atome> is the name of the atom with the this modulation, and <s#wave> is the related wave vector name.

It is possible to define any number of modulation with the same atom to describe any multi wave-vector structure.

But in this last case the actual implementation of the MXDLSQ program cannot work in multi-wave-vector case if the modulation play on the atom position.

IV - Symmetry management statements

In MXD the symmetry information is optional. You can always work in the P1 or P-1 mode (if you have an inversion centre at the origin) by the use of literal constraints in the ATOM/CATOM statements, you have any benefice to use the symtry operation except if the number of described atom is very reduced in your data. When you use the SYMTRY or CENTER statements the occupancy probability (population) field in the ATOM/CATOM statement must be the product of the true occupancy probability by the site multiplicity as with a standard BUSING- LEWY program. If all atoms are in the general position, then the time consuming is lightly less than when you describe all equivalents atoms directly. The centred mode is more efficient because, the computing time is approximatively divide by two (2) when it is used.

You have an other limitation of the symmetry statements. If an atom has a magnetic moment or has a modulated population or position, then you can not use SYMTRY and CENTER information for it, because you must define a particular name for each equivalent atome. In this case the magnetic moments or the modulations can have any relations. The examples at the end of this chapter show why do a good usage of symtry statements.

VI.1 THE LATTICE STATEMENT.

The syntax is :

 LATTICE <l#lattice> ;

The supported lattice name are P, A, B, C, I, H, F where H is the letter to indicate the use of an hexagonal lattice with the rhomboedric extinction -H+K+L=3n . This statement is used two suppress the normal computing of the atomic structure factor for not modulated atoms if the reflection is not allowed in the given lattice.

VI.2 THE CENTER STATEMENT.

The syntax is :

 CENTER [<c#exp>];

 { CENTER ; is equivalent to CENTER YES; or CENTER 1; }

The CENTER option set the mode centred if the constant parameter value is >= 0.5 (YES logical value) and release it if the parameter is < 0.5 (NO logical value). If many CENTER statement are given the last it define the centred mode (YES or NO).

The use of the centre statement is recommended because it is always advantageous in CPU time consuming.

VI.3 THE SYMTRY STATEMENT.

The syntax is :

 SYMTRY(<s#name>) = <c#m11>, <c#m12>, <c#m13>, <c#tx>,

 <c#m21>, <c#m22>, <c#m23>, <c#ty>,

 <c#m31>, <c#m32>, <c#m33>, <c#tz>;

The name of each symtry operator must be unique in the list of all symtry operators. m11...m33 are the matrix elements and tx, ty, tz are the translation.

 Example :

 SYMTRY('4.1') = 0, -1, 0, 0, { helicoidal axis (4 | 0 0 1/4) }

 1, 0, 0, 0,

 0, 0, 1, 1/4;

VI.4 THE GENSPACE STATEMENT.

The syntax is :

 GENSPACE ;

You have two possibilities: you enter all symmetry operators (but not the operators that are equivalent by a lattice translation) or to give a set of generator operators. This last case use the statement GENSPACE.

 Example :

 { space group is Fm3m }

 LATTICE 'F'; { lattice is F: h+k=2n, k+l=2n, l+h=2n }

 CENTER; { centered space group }

 SYMTRY('3[111]') = 0, 1, 0, 0,

 0, 0, 1, 0,

 1, 0, 0, 0; { axis 3 along 111 }

 SYMTRY('4[001]') = 0,-1, 0, 0,

 1, 0, 0, 0,

 0, 0, 1, 0; { axis 4 along 001 }

 GENSPACE;

VI.5 SOME CONSIDERATIONS ON THE USE OF SYMMETRY INFORMATIONS.

The symmetry management statements of MXD enable the user to work in a mode similarly to the ORFLS. When these statements are used the non magnetic and non modulated atoms (neither referenced in MOMENT statement, neither referenced in MDSDSP statement), the statistic occupancy must include the local symmetry order (or site multiplicity). The magnetic or modulated atoms are not sensitive to the SYMTRY and CENTER statements, then, they can be described completely always.

In other side, it has not evidence that the symmetry statements save computer time when you have a little number of atom in a very symmetrical space group. So it is a good pratique to use the SYMTRY statement only when the description of the structure (in term of number of ATOM) is significantly shortlest.

A special consideration must be explain for the CENTER statement because it saves always some CPU time if you have some not modulated and not magnetic atoms (except in the case where the unique atom is on the origin (where is the centre).

The CENTER statement modifies the computing of the structure factor but the SYMTRY operator are applied at each not magnetic or modulated atom to get each symmetrical equivalent one. When GENSPACE is used and CENTER is specified it change the space group to an acentric equivalent group where all the symmetry operators are different from the centre operator.

 Example :

 { we want describe the group Pm3 }

 CENTER;

 SYMTRY('3111') = 0, 1, 0, 0, { give the 111 threefold axis }

 0, 0, 1, 0,

 1, 0, 0, 0;

 SYMTRY('mx') = -1, 0, 0, 0, { give mx miror }

 0, 1, 0, 0,

 0, 0, 1, 0;

 GENSPACE; { generate the group }

In this example the space group Pm3 will be generated but in fact the operator mx, my, mz and the four threefold axis will be generated. The binary axis 2x, 2y and 2z will not be generated because they are equivalent to the mx, my and mz mirror if the inversion centre is handle as the identity operator.

VII - The experimental data management statements

The DATA management statements are used to define the experimental data in term of DATA COLLECTION.

A DATA COLLECTION is a set of experimental data with a identification name and an unique scale factor.

The complete DATA statement enables the user to define an extinction rule for each reflections, and describes the input data file to accommodate with a large range of experiment output. So the data collection statement is a versatile data reduction process. The main restriction is to have only one input line for one h k l reflection.

we have also a simplified form of the data statement to declare your intention to use a previously defined data collection.

VII.1 DATA COLLECTION DEFINITION STATEMENT.

 The syntaxe of the DATA statement is :

 DATA(<s#name>,<#scale> [,<formula> [,<formula> ...]])

 <id1>,<id2>,<id3>,...<idn>;

 data line or data directive

 END;

 An alternate form of the DATA statement to used the extinction correction is

 :

 DATA(<s#name>,(<#scale>,<#cfn2>,<#cfm2>,<#dynw>)

 [,<formula> ...]) <id1>,<id2>,

 ..<idn>;

 END;

 <#scale> parameter is the sclae factor expression.

 <#cfn2> is the nuclear coefficient correction.

 <#cfm2> is the magnetic coefficient correction.

 <#dynw> is the dynamic weight factor.

 The data line are single line with some number with space(s), tabulation or

 comma separation. Two successive comma enable user to skip a data field and

 a semicolon end the data line; in this case the data parsing of this line is

 terminated, the next reflection in take from the next line.

 All comment are allowed.

 { h k l f2 sg}

 1 -2 3 12.5 .8 { is a data line, the format is free }

 1,,,8; { is an other data line with

 h = 1, k and l are defaulted(0 is normal default) f2=8,

 sg defaulted.

 if no given default this is equivalent to : }

 1 0 0 8.0 0.0

 The <id1>,<id2> ... <idn> fields are used to define the data line fields.

 <idp> define the th'p field in a data line.

 Each id has this syntax :

 <ident> [= <c#defaultvalue>]

 You have two type of field identifiers :

 The Predefined identifiers used two define all MXD hkl data Characteristics.

 The user previously defined field (with the FFASSIGN statement) are handled

 as additionnal predefined identifiers.

 The temporary identifiers used as unused data field or temporary field.

 All predefined identifiers must be receive a value during the data

 evaluation.

 This evaluation can be done automaticaly by a super default value,

 By the explicite specification in an <idp> item,

 or by a given formula.

 The predefined field identifiers are :

 super

 identifier default nature

 value

 IH 0 H integer index of the reflection,

 IK 0 K integer index of the reflection,

 IL 0 L integer index of the reflection,

 MUL 1 Multiplicity of the reflection (used with

 RAY),

 NQ 0 for satellite as: h = H + NQ*q,

 NPOLA 0 neutron polarization specifier

 possible value are :

 0 none polarized,

 1 or + for I+ = (I++) + (I+-)

 2 or - for I- = (I--) + (I-+)

 3 for I+/I- (flipping ratio)

 5 or ++ for I++

 6 or -- for I--

 7 or +- for I+-

 8 or -+ for I-+.

 SELNB 0 Select number to use with SELECT standard

 function value in the range [0..31],

 IS 1 Reflection flag in the range [-63..63]

 abs(is) is the reflection category number

 This category can be used for select

 some class of reflection,

 is = 0 => reflection is ignored,

 is < 0 => this reflection is a part of a

 reflection packet,

 IS > 0 => this reflection is the final

 reflection in a packet

 with given observation value

 or a single crystal reflection,

 SF 0.0 Observed Structure factor for structure

 factor data,

 F2 0.0 Observed Squared structure factor (for

 F**2 data),

 RAY 0.0 Observed Lorentz corrected Intensity

 (for packet powder data),

 SF, F2, and RAY are mutually exclusive,

 SG 0.0 Sigma of the observation,

 WE 1.0 Least square Weight of the observation.

 <user field ident> 0.0 Any usage they are stored in a form factor

 table of the reflection binary data

 record.

 The temporary field are always the 0 default value if not specified.

 And additional symbol is defined in the DATA reduction statement. This is

 the symbol $NPT that denotes the current reflection number. It is started

 from 1 for the first reflection and can be used in the <formula>e.

 The <formula> are used to give a value to a predefined or user defined (by

 FFASSIGN statement) field, they can use the any <c#expr> with reference of

 OTHER predefined, user defined or temporary fields.

 The syntax is :

 <predefinedident> = <c#expr>

 The DATA Directive can be give other information to the DATA reduction

 processing as :

 Include an other file in the current data stream with the same

 syntax as the INCLUDE statement :

 INCLUDE <s#filename> [,<opt1> [, <opt2>, ...]];

 Simulate a end of file before the data end of file :

 ENDFILE;

 Specify the current wave vector with :

 WAVEVECT(<s#existing_wave_vector_name>);

 Specify the current polarization neutron magnetic field direction

 with :

 NPOLADIR(<s#existing_polarized_direction_name>);

 Example 1 :

 { single crystal F data collection reduction }

 { the data in the file have the form: h k l f sigma }

 DATA('Ourdata',Scale,WE=1/SG) IH, IK, IL, SF, SG;

 { Get the data in two successive other files }

 INCLUDE 'DATAFILE1.DAT';

 INCLUDE 'DATAFILE2.DAT';

 END;

 Example 2 :

 { single crystal data in F2 and collection wanted in F }

 DATA('F2 coll.',Scale,WE=1/SG, SF=SQRT(F2), SG = SGLU/ABS(2*F2LU))

 IH, IK, IL, F2LU, SGLU;

 ...

 END;

 Example 3 :

 { Powder packet data reduction with $ABS absorption correction }

 DATA('POWDER1',SCALE*$ABS, WE=1/SG) IH,IK,IL,MUL=2,IS=-1,RAY,SG;

 1 2 3 8

 2 3 0 4 1{IS} 125{F2}, 2.5{SG}

 ...

 END;

 EXAMPLE 4 :

 { Modulated structure with two wave vectors q1 and q2 in powder }

 DATA('data20k',SCALE,WE=1/SG,MUL=2) IH,IK,IL,NQ,IS=-1,RAY,SG;

 { Nuclear reflection }

 1 2 0 0 1 123 34

 {PACKET OF TWO magnetic SATELLITES with the two wave vector }

 WAVEVECT('Q1');

 2 0 0 1

 WAVEVECT('Q2');

 3 0 0 -1 1 12.5 1 { packet with the two satellites }

 1 1 1 -1 1 23 2 { The current wave vector is Q2 }

 ...

 END;

 EXAMPLE 5 :

 { Get data from 3 point mesure, the scan time is equal to total

 background count time in this example }

 { Use An Extinction correction }

 (* nleft and nright are the counts of

 background and nscan the scan count *)

 DATA('PHILIPS',(SCALE,E$Y),

 WE = 1/SG { standard weight },

 SG=(NSCAN+NLEFT+NRIGHT).5 { sigma },

 F2=NSCAN-(NLEFT +NRIGHT)) { intensity }

) IH, IK, IL, IS=1, NLEFT, NSCAN, NRIGHT;

 INCLUDE 'MYFILE.DAT';

 END;

VII.2 - Data collection reference statement

If the number of reflection is large, it can be advantageous to reduce the data collection in bynary form only the first time.

 In this case we can use the short DATA statement as below :

 DATA(<s#name>) = <#scale> [,<#cfn2>,<#cfm2>,<#dynw>];

VII.3 CLRDATA STATEMENT.

 The syntax is :

 CLRDATA ;

This statement clear all previously existing DATA collection. This statement, if used, must be given before all DATA statement. It can be simulated by a delete of the file "MXDBDD.DDI" (on the VAX/VMS implementation).

This statement do not delete any file but allow MXDCMP to overide the old DATA files ("MXDBDD.DDI" and "MXDnnn.BDA" in VAX/VMS system).

VII.4 - MANAGEMENT OF FORM FACTOR TABLE IN BINARY DATA FILE.

The statement FFASSIGN can be used to allocate a particular column number at a predefined form factor or to define a new predefined data field in a this allocated column.

 The syntax is :

 FFASSIGN <ident>[:<c#clnm>] [,<ident>[:<c#clnm>] ...] ;

If the <ident> is already defined table parameter (existing form factor by example) a column number is allocated only and the data statement will use it to store the sin(theta)/lambda interpolation of this table.

If clnm is specified and positive, it is the column number (in range [1..12]), else if it is specified with negative value, the column number is allocated from the end of table (column number = 13-clnm). It is convenient if the maximum column number is unknown (presently 12).

If clnm is not specified then the column given is the first free column in the increasing order.

VII.5 - MAGNETIC SPECIFICATION STATEMENT.

If you have different data collection for different experiment on the same compound. By example x-ray an neutron. You hope that MXD comput a magnetic structure factor only for the neutron data. But MXD does not know that is the x ray data collection and that is neutron data collection, and probably compute the magnetic structure contribution for both data collections.

 To avoid this, you must use the MAGNETIC statement :

 MAGNETIC <ch0> [,<ch1> <ch31>];

 where <chn> is a choice as {YES | NO } or { 0 | 1 }.

The different specification ch0 to ch31 are given for each used value of the select number SELNB (defined in the DATA statement). If a data collection has a choice NO, then the magnetic contribution is not computed, and alternatively the choice YES or 1 enable MXDLSQ to compute the magnetic contribution.

 Example :

 { set rdf to b for neutron and f + delta f' for x-ray }

 PARAM FERDF = SELECT(bfe,fefrx+fedfp),

 { set idf to nothing (0) for neutron and delta f" for x-ray }

 FEIDF = SELECT(,fedfs);

 ...

 ATOM('Fe1') = FERDF, FEIDF, ... ; { to define an atome }

 ...

 MOMENT('Mfe','Fe1') = ... ; { to define a magnetic moment

 }

 ...

 MAGNETIC YES, NO; { to set no magnetic computing with x-ray }

 ...

 DATA(... SELNB = 1 {x-ray} ...) ...;

 ...

 END;

 DATA(... SELNB = 0 {neutron} ...) ...;

 ...

 END;

VII.6 - WARNING FOR PREVIOUSLY DEFINED DATA COLLECTIONS

When you use some previously defined DATA collection you can have some important unwanted side effect. The binary data records have twelve (12) fields to hold twelve (12) user defined field values or interpolated form factors. The form factor column (in range 1..12) can be allocated automatically or by the FFASSIGN statement. The data reduction process does the interpolation of all allocated form factor and the automatic allocation is involved by the reference of an unallocated form factor table (in general by the atom statements that use the form factor tables). If you change some thing in the atom (or magnetic moments) order without do a new complete data reduction (by the use of a data reduction reference statement), then you can have some data binary file(s) ("MXDnnn.BDA" in VAX/VMS implementation) with the column value not in agreement with the new form factor allocation. In this case the computing realized by MXDLSQ is bad because the form factor can be permuted or not defined. The recommended procedure is to use the FFASSIGN statement to define all used column is the binary data file(s).

VIII - Expressions and symbols in MXD

 At the initialize time the data compiler MXDCMP define a list of

 standard function and parameters to enable the user to write any relation

 dependence with the current computing environment.

 Example :

 { Extinction as defined in SHELL-X crystallographic system }

 PARAM $LAMBDA = 0.707 {X - RAY Mo };

 VARIABLE E$X = 0; { define an extinction variable }

 LIMITS 0, 1, E$X; { limits the extinction variable excurtion range to 0..1}

 PARAM { give the formula of the extinction coefficient for each refl. }

 E$Y = (1 - 0.0001 * $FN2 * E$X / $SITHSL / $LAMBDA)**2;

 { here $FN2 is the squared atomic structure factor of the current

 reflection, and $SITHSL is the Sin(Theta)/Lambda of the current

 reflection }

 In the previous example we use the predefined symbol $SITHSL as the

 value of the 1/2d (= sin(Theta) / Lambda) of the currently computed

 reflection. We use also the symbol $FN2 as the Squared atomic structure

 factor for the current reflection. This last symbol is generally atomic

 parameter dependant, and MXDLSQ will know compute all partial derivatives of

 the newly defined variable parameter automatically.

 The general convention for the MXD reserved name is to have the special

 character $ in the identifier name.

 An other category of predefined symbol is the MXD standard functions

 set.

 The user must be remark that all these symbols are not reserved (as a

 keyword) but there use for other purpose can be generate some compatibly

 problem with the use of the standard function.

 The MXD expression management is a set of rules to drive all formulae

 interpretation.

 The first rule is :

 MXDCMP try to realize all written operation at the compile time. If an

 operator or a function is not compatible with these actual parameter kinds

 MXDCMP try to convert these expression in the desired type. An error

 message is edited if this conversion is not possible.

 The second rule is :

 The operator or function are the drivers to applied a type conversion.

 By example + is a arithmetic operator for addition, so if one is (or the two

 operand are) not numeric, then the appropriate conversion are generated.

 The distinguished type are :

 1.

 The String constant type that can be used at the compile time only.

 2.

 The Numeric constant type, usable by MXDCMP and MXDLSQ.

 3.

 The Variable parameter type, usable by MXDLSQ only

 By MXDLSQ we must understand any application program.

 VIII.1 THE MXD FUNCTIONS.

 VIII.1.1 Standard Function Of MXD.

 The defined transcendent functions are :

 SIN(<#e>) sine(angle in degrees).

 COS(<#e>) cosine(angle in degrees).

 TAN(<#e>) tangent(angle in degrees).

 ASIN(<#e>) arcsine(result in degrees).

 ACOS(<#e>) arc cosine(result in degrees).

 ATAN(<#e>) arctangent(result in degrees).

 ATAN(<#eb>,<#ea>) phases of the complex number ea + i* eb

 (result in degrees).

 EXP(<#e>) exponential.

 LOG(<#e>) natural logarithm.

 SQRT(<#e>) square-root.

 TANH(<#e>) hyperbolic tangent.

 ABS(<#e>) magnitude of <c#e>.

 MODULO(<#e1>,< e2>) return the modulo of <#e1> by <#e2>

 ROUND(<#e>) the nearest integer value of <c#e>.

 The next standard function cannot be used in a constant expression

 because it can be evaluate only by the executor process in the application

 program (MXDLSQ).

 SUMM(<idx_ident>,<#eb>,<#ee>,<#es>,<#exp>) to comput the summation

 of the expression exp when the scalar idx_ident run from

 eb to ee by step of es.

 This function can be used for integration purpose.

 INTSEL(<#esel>,<#e0> [,<#e1> ... <#e31>]) to comput the nearest

 integer n of the esel expression and return the en'th expression.

 SELECT(<#e0> [,<#e1> ... <#e31>]) to return the eSELNB'th expression.

 SUMHKL(<#exp>) return the summ on all selected reflection of the

 parameter expression.

 The next standard function can be used only with constant expression

 parameters because its are computed directly by the data compiler.

 The main usage of its, is in the MACRO directive context.

 SUBSTR(<s#string>, <c#istart>, <c#len>)

 Return the sub-string of string begining at the istart character

 and with len characters of size.

 STRING(<c#value> [, <c#format>])

 Take the nearest integer of value, convert and return the

 equivalent string. If format is given, it is the number of digit(s)

 the unsignificant (at left) digits are the zero (0) digits.

 LENGTH(<s#string>)

 Return the length (in character) of the given string.

 INDEX(<s#string1>, <s#string2>)

 Return the position (in character) of the sub-string string2

 in the string string1 (first occurance only). If not found the

 result is 0.

 NUMBER(<s#string>)

 Return the integer value of the string.

 DEFINED(<identifier>)

 Return an integer value to flag the defined or not defined

 identifier.

 The returned value are :

 -1 Undefined Macro parameter (with no actual).

 0 Undefined identifier (not declared).

 1 Defined identifier.

 2 Numeric constant.

 3 String constant.

 4 Legal operator.

 PARAMREF(<identifier>)

 Return the sequence number of the Variable Parameter identifier

 or 0 if the identifier is not defined (or declared) or this is

 not a Variable Parameter. This function must be used with the

 DSPLPAR option of MXDLSQ and must be used to give a Variable

 Parameter sequence number. That is the unique method to transfer

 a parameter reference across the OPTION statement.

VIII.1.2 - User Defined MXD Function.

 MXD enable user to define some no standard function by the use of the

 next statement (a function_declaration) :

 FUNCTION <name_id> (<P1> [,<P2>...]) = <#expr>;

 Where <Pn> is :

 { <scalar_identifier> | <function_declaration> }

 The function declaration is used to define a function as formal

 parameter. The user can not give a standard function as actual parameter of

 a user defined function :

 Example :

 FUNCTION INTEGR(A,B,FUNCTION F(X)) { to integrate f from a to b with

 10 points}

 =

 SUMM(X { integration variable},

 A {initial value},

 B-(B-A)/20 {final value},

 (B-A)/10 { step for summation },

 (F(X) + F(X+(B-A)/10))*(B-A)/20 { the summation formula }

);

 Warning :

 The User defined function are convenient for the data edition but can

 be heavy for the run time. Therefore it can be preferable to solve the

 problems without to use the user function when it is not too complicated.

VIII.2 - RESERVED AND PREDEFINED SYMBOLS.

 MXD define a set of symbols to give access to some pertinent dynamic

 data during the least square fitting.

 Mxd define also some other symbols to keep some crystallographique

 information.

VIII.2.1 - Predefined Variable Parameters.

 These symbol are not real Variable parameter and can not be used by the

 PARAMREF function (=> DSPLPAR option of MXDLSQ).

 The list of these parameter is given below :

 The values of the next parameters change for each reflection.

 Name(s) Usage

 $H, $K, $L Integer indexes of the current reflection.

 They are the components of H in the reciprocal lattice.

 $RH, $RK, $RL Components of current H in the work space reference

 system.

 $HH, $KK, $LL Components of current h in the work space reference

 system.

 $QX, $QY, $QZ Components of the current wave vector in the work space

 s.

 $OBS The current observed value SF, F2 or RAY.

 $SIG The current observation sigma.

 $WEIGHT The current static weight (as defined in the DATA stat.).

 $SITHSL The current 1/2d = sin(Theta)/ Lambda.

 $HX, $HY, $HZ The components of the polarization magnetic field in

 w. syst.

 $NPOLA The current polarization state index as defined in the

 DATA statement.

 The values of the next parameters changes each symtry operator change.

 They are usable to describe anisotropic form factor formulae.

 $SH, $SK, $SL The symmetry transformed of $RH, $RK, $RL.

 The next parameters are derivats and can be used for extinction purpose.

 $FN2 Squared Atomic (or nuclear) Structure factor Fn**2.

 $FM2 Squared Projected Magnetic Structure factor FM**2.

 $F2POLA Partial polarized neutron intensity (I++,I--,I-+ or I+-).

 $CALC Computed value without scale factor (Sf, F2 or RAY).

 The next parameters are NOT derivate and can be used only for informative

 Variable Parameter computing (by example to use SUMHKL function).

 $FNR, $FNI Real and imaginary parts of the atomic structure factor.

 $FMXR,$FMXI)

 $FMYR,$FMYI) Components of the real and imaginary parts of the

 $FMZR,$FMZI) unprojected magnetic structure factor.

 The nextparam parameters are defined to write some formulae of convergence

 acceleration process.

 $LCHI2, $CCHI2 The last and the current squared goodness of Fit.

 $LMAXF, $CMAXF The last and the current likelihood function.

VIII.2.2 - Predefined Constant Parameters.

 The CELL (or RCELL) statement define a set of constant parameter.

 These constant can be used for any usage, but the user would not change

 there value by an assignation statement.

 The angle are the Cosinus.

 $A , $B , $C , $ALPHA , $BETA , $GAMMA The direct unit cell.

 $A , $B , $C , $ALPHA , $BETA , $GAMMA The reciprocal unit cell.

 $VOLUM and $VOLUM The direct and reciprocal unit cell volume.

 The matrix TMD and TMR are also defined with :

 | x | | X | x, y, z crystallographic coordinates.

 || TMD || * | y | = | Y | .

 | z | | Z | X, Y, Z work ref. syst. coordinates.

 | h | | Hr | h, k, l coordinate in reciprocal

 lattice.

 || TMR || * | k | = | Kr | .

 | l | | Lr | Hr, Kr, Lr work reference. syst coord.

 The TMD and TMR matrix elements are defined as the constant parameters :

 $TMDXX, $TMDXY, $TMDXZ, $TMDYX, $TMDYY, $TMDYZ, $TMDZX, $TMDZY, $TMDZZ

 $TMRXX, $TMRXY, $TMRXZ, $TMRYX, $TMRYY, $TMRYZ, $TMRZX, $TMRZY, $TMRZZ

 VIII.2.3 Reserved Parameter Names.

 To be in agreement with the standard design of MXD some parameters are

 reserved to a special use. You can use but the value would be really as

 defined below :

 $LAMBDA Parameter The current wavelength.

 E$G Variable or Parameter Major extinction variable.

 E$Y Parameter The current extinction coefficient.

IX - Macro facilities in the MXD language

 The MACRO facilities of MXDCMP enable the user to define other

 statement to extend the possibility, and/or take more easy the usage of some

 complicated theory (by example : Becker and Coppens Extinction correction).

IX.1 - MACRO STATEMENTS.

 The syntax is very easy to use, is it :

 MACRO <macro_name> [<P1>, <P2> ... <Pn>];

 < statement list of this macro >

 ENDMACRO;

 Where the Pi are the formal parameter names.

 The MACRO can be used by the call :

 <macro_name> [<A1>, <A2> ... <An>];

 Where the Ai are the actual parameter value.

 A macro can be created an other macro if you use the MACRO statement

 inside : This is a nested MACRO definition. A macro can call another

 MACRO : this is a nested MACRO call. But a macro cannot call it-self. The

 recursive call of macro is not allowed.

 A macro can be deleted from the existing (and usable) MACRO if the

 macro is purged by the PURGE statement as this :

 PURGE <macro_name1> [, <macro_name2> ...];

IX.2 - Local symbol definition

 If some symbol have a limited use you can define some local symbols.

 The local symbol are created in the current dynamic block and are deleted

 when we go out of this block. The dynamic block begin from the BEGIN

 statement and are finished by a END statement. If a local symbol has the

 same name that a more global symbol then the global symbol is not accessible

 until the END statement where this local symbol is deleted.

 The syntax is :

 ... declaration of A, X symbol ... { outer level block }

 ...

 BEGIN

 ... declaration of local symbol X,Y ... { inner level block }

 ... declaration of global symbol z ...

 (* by example by : VARIABLE 0 {The global lex level} Z=13.4; *)

 ...

 { each reference to X and Y is local }

 { each reference to A IS more global }

 ...

 END { the local symbol X and Y are deleted, but not Z };

 ...

 { the old X, A and the new symbol Z can be referenced }

 ...

 Now we can describe the complet syntax of a declaration entry for the

 PARAM, the VARIABLE, the FFASSIGN and the CONTRIBUTION statements.

 [<lex_level_index>] <identifier> ... { as decribe before }

 The Lex_levelindex is an integer constant defined as this :

 0 to create a global symbol.

 n > 0 to create a symbol in the nested block of n'th outer level that

 the current level. If we are in the block of deep of 4 and if n = 2 the

 symbol should be created in the block 4 - 2 = 2.

 Example : PARAM 0 $LAMBDA = 1.54 {Angstroem}; {$LAMBDA is global }

 .F.S

 This is usefull to write a MACRO (as the extinction macro) that creates

 some global symbol (EG, EY ...) but delete all these temporary symbols.

IX.3 - Conditional compilation of a part of MXD source

 The conditionnal compilation statement (IF) is used to change the run

 flow of the MXD data analyse without change the data file.

 The syntax is :

 IF <c#expr> THEN <statement_list_if_true>

 [ELSE <statement_list_if_false>]

 ENDIF;

 If the expression expr is true (or >= 0.5), then the

 statement_list_if_true is compiled, else if the ELSE directive is used then

 the statement_list_if_false is compiled. The IF statement can be nested.

IX.4 -THE REPEAT STATEMENT.

 The syntax is :

 REPEAT <statement_list_to_repeat> UNTIL <c#expr> ;

 The statement_list_to_repeat is compiled in loop until the expression

 expr to be true (>= 0.5). This is the unique macro loop defined in

 MXDCMP.

IX.5 - THE STOP ON DETECTED ERROR STATEMENT.

 If a MACRO has detected a logical use error, it can be possible to stop

 the process with a FATAL error flag to use the single statement :

 ERROR ;

IX.6 - THE MACRO LIBRARY MANAGEMENT OF MXDCMP.

 You can create a file with a complet set of MACRO on the same subject.

 If this file is a list of MACRO definition without other MXD statement, then

 this file is a MACRO LIBRARY. MXDCMP is ready to use a particular MACRO

 LIBRARY called the STANDARD MACRO LIBRARY. The standard macro library is in

 the VAX/VMS system the file "MXDLIB:MXDLIB.MXL". The user can load a

 particular MACRO from the library to use the MACROCALL statement.

 The MACROCALL statement as the following syntax :

 MACROCALL <macro1> [, <macro2> ... <macro32>] ;

 You can load until 32 macro with one MACROCALL statement.

 IF you want use other macro library you can specify :

 MACROLIB <s#filename_of_macro_library> ;

 Each MACROCALL statement search in the last specified macro library in

 first, and after if some macro was not found, then search in the previous

 macro library. The last macro library is the standard macro library.

 If we want suppress the search on the last macro library we can use the

 single statement :

 MACROLIB ;

 This is used to reduce the search time in the inappropriate macro

 library.

 Example :

 { to use the EX$BECCOP macro for Becker-Coppens Extinction }

 MACROLIB 'MXDLIB:EXTINC.MXL'; MACROCALL EX$BECCOP;

 { to use EX$BECCOP }

 PARAM $LAMBDA = 0.89 { neutron wavelength }

 EX$BECCOP 0 {neutron}, 0{isotrop}, 1{Type 1}, 1{Lorentz distribution};

 PURGE EX$BECCOP; { purge now the macro to free memory requirement }

 { EX$BECCOP as define the E$G variable and

 the VAriable Parameter E$Y that can be specified in the data statement

 }

 ...

 DATA('Our data', (SCALE,E$Y), ...) ... ;

 ...

 END;

IX.7 - The controlled input/output of MXDCMP.

 MXDCMP can be work ask some information from then controlled terminal

 (SYS$INPUT in VAX/VMS system) and perform a limited set of other

 Input/Output operation.

IX.7.1 - The Controlled Terminal Operations.

 The terminal output statement is :

 DISPLAY [<P1>, <P2> ...] ;

 The Pi field are :

 <c#expr> [:<c#n> [:<c#m>]]

 To output the numeric value in a standard pascal formats :

 n <= 0, m <= 0 Default FLOTTING format.

 n > 0, m = 0 Integer format In.

 n <= 0, m > 0 Flotting format Em+7,m.

 n > 0, m > 0 Fixed format Fn,m.

 <s#expr> [:<c#n>]

 To output a string expression, if n is specified

 some space can be add to output exactly n characters.

 At each use of the DISPLAY statement, one line is typed out on the

 terminal.

 you can use DISPLAY; to output an empty line.

 The REPLY statement is used to read anything from the controlling

 terminal keyboard. The syntax is :

 REPLY <identifier> [, ...] ;

 Each identifier can be a number or a string. If it is a string

 constant identifier, all the line is stored in, else, it can be an constant

 parameter, in this last case, one number is read from the terminal and

 stored in the identifier.

 The dialogue is obtaint by the combined statement :

 DISPLAY <anything(s)> REPLY <a_thing> [, ...] ;

 In this case the input is doing on the same line that the output

 prompt.

IX.7.2 - The Listing Outputs.

 The output on the MXDCMP listing is obtaint by the statement WRITEMSG

 that have the same syntax that the DISPLAY statement.

 WRITEMSG <anything(s)> ;

IX.7.3 - The User File Management.

 MXD enable the user to read, write or extend until four (4) text files.

 Each file must be opened before any file operation. The OPENFILE statement

 attach a channel number (in range 1..4) to the specified file that is used

 by the READ, WRITE and CLOSEFILE statements.

 To operate on an ASCII (text) file, the file must be previously opened.

 This open operation is performed by the statement OPENFILE.

 OPENFILE [:<c#channel>] <s#filename> [, <l#mode>];

 Open the file on the I/O channel <cchannel> (or on the I/O channel 1

 by default). The <l#mode> is the operate mode for the file to open. The

 legal <l#mode> value are:

 'Read' To open an existing file for READ operations.

 'Write' If the specified file is not already existing,

 the file is created before the open,

 then it is opened for WRITE operations.

 'New' To create a new file and then open it for

 WRITE operations.

 'Append' Same function that 'Write' but if the file

 is already existing, then append the new data.

 When you have finished to write this file you can close it. The close

 operation can be performed by a new OPENFILE statement on the same I/O

 chanel, or by the CLOSEFILE statement.

 The CLOSEFILE syntax is :

 CLOSEFILE [: <cchannel>] ;

 The default I/O channel is always 1.

 To write anything to the opened file, we use the WRITE or WRITELN

 statements as :

 WRITE [:<cchannel>] <anything(s)> ;

 WRITELN [:<cchannel>] <anything(s)> ;

 Each call of WRITELN write one line on the output file, but WRITE do

 not end the current line.

 To read anything from the opened file, we use the READ statement as :

 READ [:<cchannel>] <anything(s)> ;

 The syntax of the WRITE statement is exactly the same as WRITEMSG and

 DISPLAY statements and the syntax of the WRITE statement is exactly the same

 as REPLY statements.

 The $STATUS predefined identifier can be used to know the result of the

 last file operation (INCLUDE, CHAINE, MACROCALL, OPENFILE, READ, WRITE,

 CLOSEFILE).

 The $STATUS values are:

 0 Succesfull operation.

 -1 End of file reached (READ operation) or

 Not existing file (OPENFILE statement).

 -other values System error code for PASCAL open.

X - The least-squares program MXDLSQ

 The MXDLSQ program is the Least Square fitting program of the MXD

 system. This program perform all crystallographic computations as asked in

 the source MXD data file(s). The user formulae are derivated by a formal

 process. The physical used formulae are given in the Theoritical chapter of

 this manual and the aim of the present once is to indicated the use of each

 option as defined in the MXDLSQ code.

X.1 - THE SPECIFICATIONS OPTIONS.

 These options are used to specify the wanted number of cycle, exclude

 or reject some data from the data collections and/or modifies the refinement

 processing.

 1. NCYCLE To set the wanted number of reffinement cycle.

 Format : OPTION(NCYCLE) = <c#nbcycle>;

 2. MXCATEG To work only with the observation beyong any category number

 equal or lower than the given category number (Category rejection).

 FORMAT : OPTION(MXCATEG) = <c#maxcateg>; { default 63 }

 All reflection with a catogory number greater than maxcateg must be

 rejected from the reffinement. The category number is in the range

 [1..63]

 3. MXSITHSL To give a upper limit for 1/2d of used reflection (Rejection).

 FORMAT : OPTION(MXSITHSL) = <c#upper_value>; { default no limit }

 This option can be used to do a rejection based on the value of

 sin(theta) / Lambda = 1/2d. If used all reflection with an 1/2d greater

 than the specified upper_value is rejected from the fitting.

 4. MISITHSL To give a lower limit for 1/2d of used reflection (Rejection).

 FORMAT : OPTION(MISITHSL) = <c#lower_value>; { default 0.0 }

 This option can be used to reject any reflection with a 1/2d lower

 than the specified lower_value. It can be combined with the MXSITHSL

 option to select a 1/2d range.

 5. HKLLIM To fit only with the reflection inside a particular index range.

 FORMAT : OPTION(HKLLIM) = <c#hmin>, <c#hmax>

 [, <c#kmin>, <c#kmax>, <c#lmin>, <c#lmax>];

 { default is no limit range }

 You can reject any reflection not in the specified range of index

 H, K, L. If only one range is specified it is applied at H K and L. If

 the maximum is given only the minimum is - the maximum.

 6. REJECT To set an automatic rejection to the agreement ratio

 Delta / Sigma .

 FORMAT : OPTION(REJECT) = <c#reject_lim>; { default: no rejection

 }

 When specified during each least square cycle, any reflection with

 a Delta / Sigma agreement ratio (delta = $OBS - $CALC) greater than the

 specified reject_lim value is rejected for this cycle. This is a

 temporary rejection, if at the next cycle the ratio is decreasing below

 this limit, then the reflection is used.

 7. VARROT To set a variable rotation increment accross the least square

 diagonal blocks.

 FORMAT : OPTION(VARROT) = <c#incr>; { default is 0 }

 If a positive increment incr is specified the last incr variable of

 each diagonal block are shifted in the next diagonal block, and the incr

 variable of the last diagonal block are pushed in the first one's.

 8. SAVECYCLE To do a SAVE file at each cycle, the save file names are

 "CYCLEn.MXDSAVE" where n is the cycle number. These files can be used

 as the normal save file created by the SAVE statement by an INCLUDE

 statement. The open mode of these file is the unknown mode, so the file

 are superseded when they are already existing.

 FORMAT : OPTION(SAVECYCLE) = { YES | NO }; { default YES }

 9. MAXSING To set a limit of allowed singularity during the inversion of

 least square matrix. The default is the half of the total variable

 number.

 FORMAT : OPTION(MAXSING) = <c#max_nbs>; { default Nvar / 2 }

 By default MXDLSQ accepts the singularity of the least square

 matrix.In the singularity case, MXDLSQ clear all correlation factors of

 the singular variable and set to one (1.0) the corresponding diagonal

 term. the related variable is flagged as a "LOCKED" variable and it is

 fixed for this cycle. If during a cycle, the number of singularity is

 greater than the current value of max_nbs, then MXDLSQ stop the

 reffinement.

 10. MINDIAG To set an artificial singularity.

 FORMAT : OPTION(MINDIAG) + <c#minpivot>; {default 0.0}

 If, during the matrix inversion process (by Sholesky method), a

 matrix pivot is lower than the specified value, it is considered as null

 and an artificial singularity occurres. This option can be a good

 method to get an acceptable convergence with a limited number of

 observation.

X.2 - THE LISTING OUTPUT OPTIONS.

 The MXDLSQ option are in the following list :

 1. SHORTLST To enable or disable the short listing mode (the default is

 enabled). When the short listing mode is enabled, many other listing

 options are discarbed (as LISTHKL) and the LARGLINE is forced to NO.

 Format : OPTION(SHORTLST) = { YES | NO };

 Default : OPTION(SHORTLST) = YES;

 2. LISTHKL To drive the listing of the reflections.

 Format : OPTION(LISTHKL) = {YES | NO [, <c#rejlst>] };

 Default option : OPTION(LISTHKL) = NO;

 Enable(YES) or Disable(NO) the reflection listing output. If

 Enabled and if rejlst is specified then only the reflections computed

 with the delta/sigma > rejlst are listed out. In this last case the hkl

 reflections inside a reflection set are never listed except the last.

 3. LISTRES To enable or disable the listing out of intermediary variable

 results.

 Format : OPTION(LISTRES) = { YES | NO };{ the default is YES }

 If YES is given (default) the new, old, change and sigma of each

 variable is listed out for each cycle. If No is specified, then only

 the final value and sigma are listed out after the last cycle.

 4. LISTMAT To output on the listing all the correlation matrix.

 Format : OPTION(LISTMAT) = {YES | NO}; {default NO => Disable}

 Enable the listing of the final correlation matrix if YES. The

 correlation matrix output can be very large, so for the large number of

 variable (by example more than 30 variables) it can be more efficient to

 use the MXCORREL option.

 5. DSPLPAR To display until four (4) variable parameters in the reflection

 listing.

 FORMAT : OPTION(DSPLPAR) = PARAMREF(<param_ident>) [,...];

 Param_ident must be the name (identifier) of a Variable Parameter.

 The standard function PARAMREF is used to get the sequence number of

 this Variable Parameter Identifier. Until four (4) Variable Parameters

 can be specified. If there are more, then only last four would be

 displayed. This option is usefull to known any parameter value that is

 computed for each reflection as an extinction coefficient, or an

 analytic form factor...

 6. STRINI To output a structure description before the first reffinement

 cycle.

 FORMAT : OPTION(STRINI) = {YES | NO}; {default NO => Disable}

 If this option is enabled then MXDLSQ output a description of the

 structure with all defined asymmetric atoms, all special atoms with

 there different modulation and/or magnetic moments.

 7. STREND To output a structure description after the final reffinement

 cycle.

 FORMAT : OPTION(STREND) = {YES | NO}; {default NO => Disable}

 This option has the same function that the option STRINI except

 that this is the final structure that can be listed out.

 8. LISTSYM To output the list of symtry matrix(s) in the initialize time.

 FORMAT : OPTION(LISTSYM) = {YES | NO}; {default NO => Disable}

 This option can be used to display on the listing the list of all

 symtry operators (origine center eqivalent are not output).

 9. LISTVER To enable or disable the listing out of partial R factors.

 Format : OPTION(LISTRES) = { YES | NO };{ the default is NO }

 If YES is given the R factor of each data collection are listed

 during the intermediary cycles. But same if NO (the default) is given,

 these partial R factors has listed out at the end cycle.

 10. MXCORREL To ask to MXDLSQ to display any correlation factor with a value

 greater than the specified value.

 FORMAT : OPTION(MXCORREL) = <c#max_corr>; { default is 1.0 }

 This option is used to output on the listing during final cycle,

 all correlation factor greater than the specified value. A often used

 max_corr value is 0.65.

 11. DSPLFMAG To display the projected magnetic structure factor (FM) of each

 reflection.

 FORMAT : OPTION(DSPLFMAG) = {YES | NO }; { default NO }

 When used, this option inserts the projected magnetic structure

 factor in the reflection listing. If enabled all DSPLPAR option are

 ignored.

 12. NBSELIN To display the select number in the data column or by message.

 The YES value enables the output of SELNB in a LISTHKL output as a

 column

 number. If NO value is specified, then each change of SELNB insert

 a message in the LISTHKL output.

 FORMAT : OPTION(NBSELIN) = { YES | NO }; { default yes }

 13. LISTPAR To Enable the list of all known variable parameters.

 FORMAT : OPTION(LISTPAR) = { YES | NO }; { default yes }

 If this option is set (default), all the variable parameters

 (except those with a name begining by the character #) will be listed

 out at the end of run, with there last values and there last related

 sigma (computed to use the current correlation matrix).

 14. FMAGDISP To display the magnetic structure factor (Fm) of each

 reflection.

 FORMAT : OPTION(FMAGDISP) = {YES | NO}; { default NO }

 When used, this option inserts the unprojected magnetic structure

 factor in the reflection listing. If enabled all DSPLPAR option are

 ignored. This option is not compatible with the DSPLFMAG option.

 15. LIFEDISPL is a future life display option. its use is reserved and

 without garanty.

X.3 - OUTPUT OPTIONS TO GO TO OTHER PROGRAMS.

 1. UPDREF To output a binary file of final computed structure factors (to

 use as Fourier input file) for each data collection.

 FORMAT : OPTION(UPDREF) = {YES | NO}; {default NO => Disable}

 This option is given to use with a Fourier program. In VAX/VMS MXD

 implementations some Fortran programs in MXDLIB: are given to prepare a

 file for SDP or MK3 crystallographic system that use these files.

 The fortran program MXDCAM source in the disk area MXDLIB can be

 take as a good example to get informations from the MXD binary data

 files. For each data collection MXDnnn.BDA is the data file and

 MXDnnn.BCF is the computed structure factor file where nnn is the data

 collection number which start from 000.

 2. MK3OUT To enable the creation of a computed reflection list at the end

 of this run in a MK3 compatible format to perform spin density map. The

 file name is 'MXDnnn.MK3" where nnn start from 000 for and is

 incremented by 1 for each data collection.

 FORMAT : OPTION(MK3OUT) = {YES | NO} [, Hx, Hy, Hz];{default NO

 and 0 0 1} The (Hx, Hy, Hz) vector is used as magnetic direction. The

 magnetic structure factor is projected on this vector to give the FM

 (magnitude) and PH (phase) output on the created file.

 The file has the following format :

 |C fortran source

 | READ(1,500) IH, IK, IL, FM, PH, DOBS, DELTA

 | 500 FORMAT(3I4,2F12.5,F10.3,F16.5,F12.5)

 Where IH, IK, IL denote the reflection index, Fm is the magnetic

 structure factor componante along the applied magnetic field, and Ph is

 the related phase, DOBS is the observation and DELTA is DOBS -

 computedvalue.

 3. ATOMOUT To output an atom coordinate list for other program in the file

 "ATOM.DAT". This file is directly compatible with the ORTEP (Carol

 Johnson) crystallographic structure display program.

 FORMAT : OPTION(ATOMOUT) = { YES | NO }; { default NO }

 4. SAVEMAT To save the final correlation matrix at the end of run.

 FORMAT : OPTION(SAVEMAT) = { YES | NO}; {default is NO };

 This option can be used to get an ASCII file with all the

 correlation matrix and sigma of variable information.

XI - VAX/VMS IMPLEMENTATION OF MXD

 In this chapter we present the particularity of the

VAX/VMS (Digital Equipment Coorporation) of MXD.

XI.1 - MXD INSTALLATION.

 This file is a basic guide to instal the MXD software.

XI.1.1 - The First MXD Installation Is Performed In Steps As Below :

 1/ You must get a directory to put in all MXD files.

 This can be a particular directory in your private

 disk area or a more common directory disk area.

 In this last one, you must contact your system manager

 to get this disk area with the common user read,

 execute, write and delete access for you and read

 and execute access for all the MXD users.

 2/ You must logged in and enter in this particular disk

 disk area by a command as (example) :

 $ SET DEFAULT DUA3:[SOFTWARELIB.CRYSTALLO.MXD]

 3/ You must mount the MXD kit magtape on a magtape drive

 by a VMS mount command. If the magtape name is MUA0

 the command is:

 $ MOUNT MUA0:/FOR

 After, you must read this magtape with the VMS BACKUP

 utility by the command :

 $ BACKUP/REW MUA0:MXDSET/SAVE []/NEW

 At the end of BACKUP you can dismount the magtape by

 the next VMS command

 $ DISMOUNT MUA0:

 and remove the magtape kit of the drive.

 4/ Now you run the command file MXDINSTAL with the

 parameter CONTINUE as this :

 $ @MXDINSTAL CONTINUE

 This command file performs all appropriate actions to

 complete the MXD software installation. The generated

 dialogue give the opportunity to verify the MXD

 installation by the execution of the MXDIVP command

 file (IVP as Installation Verification Product).

XI.1.2 - TO Upgrade From A Previous Version 3.4 Or Above.

 The upgrade from a previous MXD version is performed by the VMS command

file MXDINSTAL if your actual MXD version is the version V3.4E or any more

recently version. For all old version (with a version number below 3.4E)

you must proceed as for the first installation except the step 1.

 The Upgrade of MXD version is performed by the command :

 $ @MXDINSTAL

 The command file performs all appropriate actions to upgrade the MXD

software installation. The generated dialogue give the opportunity to verify

the MXD installation by the execution of the MXDIVP command file (IVP as

Installation Verification Product).

 The MXDINSTAL command file performs the mount, backup and dismount of the

magtape and all other appropriate action as: replaces all old files and

purges the old versions. In some case in can be advisable to mount the

magtape before to activate the procedure. In this situation you must use the

following DCL commands :

 $ MOUNT MUA0:/FOR

 $ @MXDINSTAL

 In this case the MXDINSTAL procedure do not dismount the magtape on its

complexion.

XI.2 - VAX/VMS MXD COMMANDS.

 A limited set of command is defined by the file "MXDLIB:MXDDEF.COM".

XI.2.1 - The Least Square Command MLS.

 This is the main MXD command to work with MXD.

 The MLS command syntaxe is :

 $ MLS <primary_file_name> [<listing_devicename> [<savedevicename>]]

 The first parameter, that must be present, is the primary MXD source file

name that you have created (with EDT(Edit), TPU ... and so on ...). The

second parameter is the device where the listing files "MXD.LIS" and

"MXDLSQ.LIS" must be written. If it is not specified or if you specify "*",

then the controlling terminal "TT:" is used. The last parameter is used to

specify if you want use a previously created file where the last variable

values are saved (by MXD). The save device name is the physical name that you

want to associate to the logical device "IN:". By default before the first

use of the MLS command, the logical device "IN:" is defined as the null device

"NL:".

 After for the next use of the MLS command the "IN:" logical device

definition is changed only if the third MLS parameter is specified.

 To use this Third parameter the INCLUDE statement in the MXD file must

use the "IN:" device as this :

 INCLUDE 'IN:filenameofsavefile';

XI.2.2 - The MXD Command.

 They have the forms :

 $ MXD [<primary_file_name>]

 If the file is not specified, then MXDCMP is called in conversational

mode and prompt you to get a legal MXD command. You can return to DCL level

to use the END; or ENDFILE; commands or the end of file character Z. This MXD

command usage can be usefull to do some small computings in conversational

mode as this :

 MXD> DISPLAY sin(30);

 Output the sinus of 30 degrees on the terminal in floatting format.

 All the legal MXD command can be use in this mode.

 If a file is specified, Then MXDCMP proceed this file as the command MLS

except two things :

 The MXD.INI file is never deleted by the MXD command and you must delete

it after by the command MXDDEL.

 The MXDLSQ program is not called.

 A typical application of the MXD command is to create a spherical

absorbation table for a given spherical single crystal by the use of the file

"MXDLIB:ABSORB.MXD" that use the DISPLAY REPLAY statements and the output on a

ASCII file to create the file "ABSTAB.MXD". This file can be used in a

primary MXD file (by INCLUDE 'ABSTAB.MXD'; statement) to get the appropriate

absorbation and average way (for extinction) tables for your sample.

XI.2.3 - The MXDDEL Statement.

 You must use it each time where the MLS or the MXD (with specified MXD

file) are canceled by a VMS error to delete the trailing "MXD.INI" file(s).

 $ MXDDEL

 The MXDDEL definition is :

 $ MXDDEL == "DELETE MXD.INI;*"

APPENDIX A

ERROR NUMBER SUMMARY

The general form of an MXD Data Compiler error message is:

 [FATAL] ERROR <mdn> # <nb> AT "<stat>" STATEMENT # <cpt>

 IN THE FILE : <filespecif>

 AT THE LINE # <linenb>

 The error number <nb> is associated at the summary listed

 below, the "-" sign flags the always FATAL errors indicated by the

 word FATAL in the error message. <cpt> is the current statement

 count at <linenb> the source line number in the input file defined

 by the file specification <filespecif>. <stat> is the name of the

 current parsed statement. The Item <mdn> is a briev form of the

 error detector program modul name.

A.1 - Core Allocation and Input Stream Errors

 1: Too long input data line(max. = 132 characters).

 -2: Heap allocation overflow.

 -3: Context stack overflow.

 4: Array parameter interpolation (implied) reference overflow.

 -5: Operand stack overflow.

 -6: INTERNAL: Operand stack underflow.

 -7: Operator stack overflow.

 -8: Identifier scope stack overflow.

 11: Exponent overflow (on read constante number).

 12: Constant string too long (max. = 132 characters).

 13: Illegal character.

 14: Data Stream error: "+" or "-" expected.

 15: Data Stream error: "," or ";" expected.

 16: Data Stream error: second polarisation sign expected.

 17: Illegal in Data Stream.

 -18: Illegal INCLUDE/CHAINE syntaxe.

 -19: Data field list overflow(max. = 32).

A.2 Computing Errors

 21: Integer overflow.

 22: String length overflow(max. = 132 characters).

 23: Out of range ASIN/ACOS parameter.

 -24: INTERNAL.Illegal interpolation.

 25: Zero length array parameter for interpolation.

 26: Array parameter with length less than 4.

 27: Zero divide operation.

 28: Real power of a negative number.

 29: Logarithme of a negative argument.

 30: Square root of a negative argument.

 31: Out of range item field index.

A.3 Syntaxe Errors

 51: Undeclared identifier.

 52: String parameter name expected.

 -53: Binary operator, types and operator cannot match.

 -54: Two constant parameters expected for a binary operator.

 -55: Unary operator not allowed with this type of operand.

 -56: Constant parameter expected for this unary operator.

 57: Numeric expression expected.

 58: Numeric constant expression expected.

 59: Variable identifier expected.

 60: String constant parameter expected.

 61: Identifier expected.

 62: Illegal use of a reserved keyword.

 63: Identifier declared twice.

 64: Parameter type cannot match in an assignement statement.

 65: Initial value (to define the parameter type) expected.

 66: Undefined statement.

 67: Bad use of an unary operator.

 68: Unexpected END/ENDIF/ENDMACRO/ELSE//UNTIL keyword.

 69: An array parameter (as form factor) was required.

 71: "THEN" is expected in IF statement.

 -72: "UNTIL <const-expr> ;" was expected in a REPEAT statement.

 73: A string or numeric param identifier was expected.

 74: A string or numeric constant expression was expected.

 75: A variable identifier was expected.

 -76: External or Physical statement not allowed in openfile

 mode.

 -77: Unexpected End-of-file in this context.

 78: Value expected for for a parameter declaration.

 -79: Illegal assignassion to an existing variable parameter.

 81: ")" expected.

 82: "(" expected.

 83: "]" expected.

 84: "[" expected.

 85: "," expected.

 86: ";" expected.

 87: "," or ";" expected.

 -88: INTERNAL. Undefined type.

 89: "+" or "-" expected.

 90: "=" expected.

 91: "=" or "," expected.

 -93: Illegal ENDFILE statement in a macro.

 -94: INCLUDE/CHAINE illegal in a macro.

 95: Macro identifier expected.

 96: Undeclared macro.

 -97: Macro parameter defined twice.

 -98: Macro declared twice.

 99: Option identifier expected.

 101: Undeclared item.

 102: Item declared twice.

 103: Minimum of one physical field definition expected for an

 item.

 104: Some unit cell data expected.

 -105: Negative or zero unit cell volume.

 -106: Rhombohedral unit cell expected.

 107: Undefined lattice type.

 -111: Too many macroname in one MACROCALL statement(max = 64.).

 -112: Some macro(s) are not find in the current macro library.

 151: data predefined identifier expected.

 152: Ambiguous data nature definition.

 -153: Predefined identifier already used.

 -154: Undefined data directive.

 -155: Identifier found in a data stream line.

 -156: Neutron polarization specification unexpected.

 157: Negative multiplicity.

 158: External Data Collection not exists.

 -171: Illegal use of CLRDATA statement after a DATA declaration.

 -201: Illegal value for an I/O channel.

 -202: OPENFILE mode specification was expected.

 -203: Illegal OPENFILE mode specification.

 -204: User file was not opened for the READ operation.

 -205: User file was not opened for the WRITE operation.

 -206: Cannot open the file.

 -441: A declared function was expected.

 -442: The function parameter list do not matchs.

 -444: SUMM index identifier cannot be created do to an error.

 -999: An ERROR statement was executed.

APPENDIX B

HOW WRITE MXD DATA AS STANDARD.

 The MXD input data file can be write with many various method, but it can

be a good pratic to follow a standard presentation to make it easy to

understand.

 As it is possible, the user is strongly encouraged to follow this

statement order :

 Constant definitions if used.

 Macro call and macro definitions if used.

 MXDLSQ options as NCYCLE, LISTHKL ... and so on.

 Variable declarations with LIMITS and LSQBLOCK directives.

 Parameters declarations if used.

 Atoms declarations.

 Moments or MDSDSP declarations.

 Related data parameters definitions.

 Experimental Data collection decalration.

APPENDIX C

LEGAL EXPRESSION OPERATORS AND STANDARD FUNCTION

C.1 - OPERATORS FOR ALL CONSTANT EXPRESSIONS.

They can be applied at any numeric or string expressions.

 <sc#e1> = <sc#e2> test if equal.

 <sc#e1> <> <sc#e2> test if not-equal.

 <sc#e1> > <sc#e2> test if greater than.

 <sc#e1> >= <sc#e2> test if greater than or equal.

 <sc#e1> <= <sc#e2> test if less than or equal.

 <sc#e1> < <sc#e2> test if less than.

C.2 - OPERATORS FOR NUMERIC ALL EXPRESSIONS.

 <#e1> + <#e2> addition operator.

 <#e1> - <#e2> substract operator.

 <#e1> * <#e2> multiply operator.

 <#e1> / <#e2> divide operator.

 <#e1> ^ <#e2>

 or <#e1> ** <#e2> exponential operator.

 - <#e> unary minus operator.

 + <#e> unary plus operator.

C.3 - OPERATOR FOR STRING EXPRESSIONS.

 <s#e1>!! <s#e2> concatenation operator.

C.4 - FUNCTIONS FOR VARIABLE EXPRESSIONS.

 INTSEL(<e sel>,<e 0>[,<e 1>,...<e 31>]) select one value function

 The selected expression is the

 <e sel> expression.

 SELECT(<#e0>,<#e1>,<#e2>,<#e3>) select one value function

 The selected expression is the

 SELNB (defined in DATA) expression.

 SUMHKL(<e x>) return the sum of all valid hkl in

 data if the parameter expression.

C.5 - FUNCTIONS FOR ALL NUMERIC EXPRESSIONS.

 ROUND(<#e>) the nearest integer value of <c#e>.

 MODULO(<#e1>,< e2>) return the modulo of <#e1> by <#e2>

 SIN(<#e>) sinus.

 COS(<#e>) cosinus.

 TAN(<#e>) tangent.

 LOG(<#e>) natural logarithme.

 EXP(<#e>) exponential.

 ASIN(<#e>) arcsin.

 ACOS(<#e>) arccosinus.

 ATAN(<#e>) arctangent.

 TANH(<#e>) hyperbolic tangent.

 SQRT(<#e>) square-root.

 ATAN(<#eb>,<#ea>) phasis of the complex number ea + i* eb.

 ABS(<#e>) magnetude of <c#e>.

 ROUND(<#e>) the nearest integer value of <c#e>.

C.6 - OPERATORS FOR ALL NUMERIC EXPRESSIONS.

 <#e1> ! <#e2> logical inclusive or.

 <#e1> & <#e2> logical and.

C.7 - FUNCTIONS FOR NUMERIC CONSTANT EXPRESSION.

 NUMBER(<s#e>) convertion the string in integer number.

 INDEX(<s#e1>,<s#e2>) give the position of the first recurence

 of <s#e2> in <s#e1> if found, and 0 else.

 LENGTH(<s#e>) give the length in character of <s#e>.

C.8 - OPERATORS AND FUNCTIONS FOR STRING EXPRESSION.

 <s#e1> !! <s#e2> string concatenation operator.

 STRING(<c#e1>) conversion of the nearest integer of

 <c#e1> in numeric string.

 STRING(<c#e1>,<c#e2>) same, but complet the string to <c#e2>

 digits with add some "0" at left.

 SUBSTR(<s#e>,<c#e1>,<c#e2>) extrac a substring begin at the

 <c#e1> th. character of <s#e> and with

 <c#e2> length.

 if <c#e2> is omitted then the substring

 is limited at the and of the string <s#e>.

C.9 - THE PRE-DECLARED VARIABLE PARAMETERS.

MXD has a variety of pre-declared variable identifiers, The Variable terms is

used to tell that the actual value is undefined. These identifiers name can

be used anywhere a variable expression can be used except for the symbol

$CALC.

All these parameters are related with the current reflection.

 $H,$K,$L Reciprocal lattice vector H coordinates for the

 current reflection has given in DATA statement.

 $RH,$RK,$RL Reciprocal lattice vector H in real coordinates

 in 1/Angstroem(s).

 $SH,$SK,$SL Symmetry transformed reciprocal lattice vector H in

 real coordinates in 1/Angstroem(s). Can be used to

 define any anisotropic form factor or anharmonic

 thermal vibration factor.

 $HH,$KK,$LL Scattering vector coordinates in the reciprocal space

 in 1/angstroem(s). This vector is given by the

 formula : h = H + NQ * q where q denotes the related

 reflection wave vector.

 $SITHSL SIN(THETA)/LAMBDA = 1/(2*d) = magnitude of the h vector.

 $QX,$QY,$QZ The coordinates of q wave vector in 1/angstroem(s).

 $HX,$HY,$HZ The magnetic field components for neutron polarization.

 $OBS The observed data as given in DATA statement.

 $SIG The sigma value as given in the DATA statement.

 $WEIGHT The weight as given in the DATA statement.

 $CALC The value of the current F or F**2 computed structure

 factor. This identifier can be only used in a data scale

 expression or a related parameter.

 $FN2 The squared crystallographic structure factor.

 $FM2 The squared and projected magnetic structure factor.

 $F2POLA Partial polarized neutron intensity (I++,I--,I-+ or I+-).

 $FNR, $FNI Real and imaginary parts of the atomic structure factor.

 $FMXR,$FMXI)

 $FMYR,$FMYI) Components of the real and imaginary parts of the

 $FMZR,$FMZI) unprojected magnetic structure factor.

 $LCHI2, $CCHI2 The last and the current squared goodness of Fit.

 $LMAXF, $CMAXF The last and the current likehood function.

APPENDIX D

THE STANDARD MACRO LIBRARIES.

 The standard macro libraries is a divide in two sets. The standard

library "MXDLIB.MXL" for various purpose, and the secondary extinction library

"EXTINC.MXL" .

 In the VAX/VMS implementation these two libraries are located on the MXD

disk area "MXDLIB:" .

 All the macro libraries can be printed since that are text files.

D.1 THE GENERAL PURPOSE MACRO LIBRARY "MXDLIB.MXL" .

 This library is always selected to load the required macro. The macro

can be loaded by two methods :

 The standard method by the use of the statement MACROCALL (Chapter IX) or

by the use of the predefined macro $. The macro $ is defined in the "MXD.OPT"

file that is included by the "MXD.INI" file (created by the MLS command).

 The list of the $ macro is :

 MACRO $ P0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15;

 MACROCALL P0;

 P0 P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15;

 PURGE P0;

 ENDMACRO;

 By the use of the macro $ the use of a standard macro is performed by :

 $ <macroname> [<listofmacroparameters>] ;

 The next examples use this macro when the macro is used one unique time.

If the macro has many call (HELMOM or HELDSP), then it is better to use a

statement as :

 MACROCALL HELMOM, HELDSP; { Load HELMOM and HELDSP }

D.1.1 - The HELMOM Macro For Helimagnetic Moment Description.

 To creat a complex magnetic moment M = u-i*v with :

 Mu and Mv denote the magnitudes of u and v,

 Frm denotes magnetic form factor,

 Om, Chi, Phi are Eulerian angles,

 Al is the ellipse circulation phasis.

 mnam will be the name of the new magnetic moment,

 anam is the name of the related atom,

 qnam is the name of the related wave vector.

 The Eularian angle are defined as to be zero when u and v are respectively

 parallel to the X and Y axis of the working space.

 Then the MXD statement creates an helimagnetic moment are in this

example :

 HELMOM 'MQ1FE3', 'FE3', 'Q1', Om, Chi, Phi, Mu, Mv, Al;

 The extremity of the magnetic moment MQ1FE3 describe an ellipse when we

change of the unit cell with the variation of the scalar product :

 -----> -->

 r(FE3) * Q1

D.1.2 - The HELDSP Macro For Modulated Displacement Description.

 To creat a complex magnetic displacment D = u-i*v with :

 Du and Dv denote the magnitudes of u and v,

 Om, Chi, Phi are Eulerian angles,

 Al is the ellipse circulation phasis.

 dnam will be the name of the new displacment,

 anam is the name of the related atom,

 qnam is the name of the related wave vector.

 The Eularian angle are defined as to be zero when u and v are respectively

 parallel to the X and Y axis of the working space.

 Then the MXD statement creates an harmonic displacment are in

 this example :

 HELDSP 'DQ1FE3', 'U1', 'Q1', Om, Chi, Phi, Du, Dv, Al;

 The extremity of the displacment vector DQ1FE3 describe an ellipse when

we change of the unit cell with the variation of the scalar product

 -----> -->

 r(U1) * Q1

D.1.3 - Le Page And E.J. Gabe Extinction Correction.

 This correction of the secondary extinction can be give good result when

the extinction is not to large. The correction computing is performed by the

statement :

 $ E$PGNA;

 This macro define the variables E$GBETA the extinction mosaic

coefficient, and E$X the ratio of the normal cinematic crystal.

 The parameter E$Y is defined as the extinction correction coefficient to

applied to the squared structure factor by the use of the DATA statement.

 Example :

 DATA(<name>, (<scalefac.>, E$Y), ...) ... ;

 Note : The E$PGNA macro is $FN2 (squared nuclear structure factor)

based correction, then it is not appropriate for an magnetic diffraction.

D.1.4 - SHEL-X Extinction Correction.

 This correction of the secondary extinction is given to be able to

compare with the SHEL-X refinement results. The correction computing is

performed by the statement :

 PARAM $LAMBDA = 0.96; { define the used wavelength }

 $ E$SHELL; { define E$Y }

 This macro define the variable E$X the extinction mosaic coefficient.

The parameter E$Y is defined as the extinction correction coefficient to

applied to the squared structure factor by the use of the DATA statement.

 As for the E$PGNA macro, E$SHELL is $FN2 based and cannot be applied to a

magnetic diffraction.

D.1.5 Cooper And Roose Formula For A Cylinder Absorption.

 When we refine from powder is not always possible to know the absorption

because it is difficult to evaluate the powder density (as for example in

metallic hydride powder). So it is interresting to fit the absorption

coefficient directly. If the absorption is not to large, it is possible by

the use of the Cooper and Roose formula. The cylinder is the typical form of

the neutron powder sample. To use it :

 $ ABS$CYL;

 The A$MUER variable is created, and the $ABS parameter is defined to be

the absorption coefficient that can be used as a scale correction factor.

 Example :

 DATA(<name>, <scalefac.>*$ABS, ...) ... ;

D.2 - THE P. BECKER AND P. COPPENS (LINEX LIKE) EXTINCTION CORRECTION.

 The macro EX$BECCOP give all the extinction correction as the LINEX

program. The use follow the next model :

 MACROLIB 'MXDLIB:EXTINC.MXL'; { set the extinction library }

 MACROCALL EX$BECCOP; { load the Becker and Coopens macro }

 { before to call the macro always define the wavelength }

 PARAM $LAMBDA = 0.96; { define the wavelength (Angstoem) }

 { not always required }

 { for spherical crystal }

 INCLUDE 'ABSTAB.MXD'; { get the definitions of $ABS and E$TMU

}

 { for non spherical crystal }

 FFASSIGN E$TMU:-1 { assign the last column at E$TMU }

 { E$TMU will be read

 by the DATA statement }

 EX$BECCOP <irad>, <iso>, <ityp>, <idist>,

 [<r>, <mu>, [<thtm>, [<UBMATRIX>]]] ;

 where :

 irad is 0 for neutron data,

 1 for x-ray data.

 iso is 0 for isotrope mode,

 1 for anisotrope type Coppens-Hamilton,

 2 for anisotrope type Thornley-Nelmes.

 ityp is 1 for a crystal type I,

 2 for crystal type II,

 3 for the general case.

 idist is the distribution type used only when ityp =1 or 3,

 0 for Gaussien distribution,

 1 for lorentzien distribution.

 The following parameters are not always required.

 The two next parameter are used only when E$TMU is not defined.

 r is the sherical sample rayon if used.

 mu is the linear absorption coefficient if used.

 thtm is used only in the x-ray case.

 thtm is the monochromator Bragg angle in degrees or 0.0

 The UB matrix is used only in anisotropic cases.

 It is defined as this :

 Rc = UB * Rg

 Where, whne omega = chi = phi = 0 (Goniometer angle at 0) :

 the Rg vector is explain in the basis :

 X // to incident beam and in the same direction,

 Z is vertical,

 Y = Z o X (vectorial product).

 Rg is the vector attached to the goniometer head and

 rc the same vector attached to the direct unit cell.

 If the E$TMU symbol is not already defined EX$BECCOP use the Cooper and

Roose correction for spherical crystal, then it must get the rayon of the

sample (in cm.) and the linear absorption coefficient (in cm-1).

 If the sample is really a sphere, and the absoption is low this solution

can be correct, but is the absorption is important then the MXD procedure

ABSORB is more suitable. In this last case the user creates a file

"ABSTAB.MXD" by the command (VAX/VMS case) "MXD MXDLIB:ABSTAB" and includes

the file before the activation of the macro EX$BECCOP. The ABSTAB.MXd file

defines the symbol $ABS and E$TMU as the absorption and average of way in the

crystal. If the crystal is not a sphere then it is required to use an

Gausse-Legendre absorption program as the ARRANG program of the MK3 set

(Cambridge library).

 When $F2 is not defined the macro EX$BECCOP generate a $FN2 based

correction but the user can define $f2 before the macro activation as this :

 PARAM $F2 = $FN2 + $FM2;

 In this last case the extinction correction is performed for the general

case where the reflection are mixed (nuclear and magnetic contributions).

 For the polarized neutron computing we must define :

 PARAM $F2 = $F2POLA;

 Then the correction is computed on the partial intensity contributions

I++, i--, I+- or I-+.

APPENDIX E

MXD DATA FILES STRUCTURES

MXD use the next following file to keep the data collections in a easely usable form.

MXD file name created by, used by, internal form and use.

MXDINT.TMP MXDCMP MXDLSQ ascii file

 Reverse polish code and

 directive for all application

 program (MXDLSQ or other in

 future).

MXDBDD.DDI MXDCMP MXDCMP Pascal binary file,

 list of the specification of

 each defined data collection.

MXDnnn.BDA MXDCMP MXDLSQ Pascal binary file,

 MXDFOU* One record by reflection line.

 MXDSDP nnn is the serial number of the

 MXDCAM data collection, that is starting

 from 000.

MXDnnn.BCF MXDLSQ MXDFOU* Pascal binary file,

 MXDSDP One record by computed refection

 MXDCAM line. It is used to get the

 computed structure information

 for the data collection write

 in the file MXDnnn.BDA .

APPENDIX F

MXD INTERFACE WITH OTHER CRYSTALLOGRAPHIC SYSTEMS.

 F.1 OUTPUT INTERFACES TO THE CAMBRIDGE LIBRARY MK3.

 This interface are designed to perform Fourier (or Fourier difference

map) from the mxd binary datafiles.

 This is the program in the file 'MXDLIB:MXDCAM.FOR'.

 It read the selected MXDnnn.BDA and MXDnnn.BCF files to write an ascii

file for the FOURPL program of MK3 Cambridge library. This is a Fortran 77

program that can be used as a model of interface. It prompts the user to get

the value of nnn number and ask if it is a F2 or F data collection.

 Presently, the data information in the MXDINT file is not used.

F.2 - INPUT INTERFACE FROM CAD4 GONIOMETER (ENRAF NONIUS 4-CIRCLES).

 Built an ascii file form the CAD4 resulting data files. The created file

can be "included" directly in the MXD DATA statement. This is the program

'MXDLIB:REDMXD.FOR'.

F.3 - INPUT INTERFACE FROM THE SDP (B. FRENZ) CRYSTALLOGRAPHIC SYSTEM.

 Fortran file: 'MXDLIB:SDPMXD.FOR'.

 Input: Binary 'REFL.FOA' file.

 Output: Ascii file to "Included" in a MXD DATA Statement.

F.4 - OUTPUT INTERFACE TO THE SDP (B. FRENZ) CRYSTALLOGRAPHIC SYSTEM.

This program creates a REFL.FOA file with the standard SDP format that include the computed and observed structure factors. They are scaled in normalized structure factor units. The magnetic contribution is deduced, and the extinction (or other) correction are applied, to get a correct Fourier map.

 Presently, the data information in the MXDINT file is not used, so MXDSDP

prompts the user to get the nnn number of the data collection.

 Fortran file: 'MXDLIB:MXDSDP.FOR'.

 Input: MXDnnn.BDA and MXDnnn.BCF MXD binary files.

 Output: Binary 'REFL.FOA' file.

APPENDIX G

EQUIVALENT REFLECTIONS UTILITIES

G.1 - SORTING AN ASCII FILE IN INCREASING SIN(THETA)/LAMBDA.

 The pascal program SORT is used to performs any theta sorting on a ASCII

data file, the output form, is compatible with MXD and with the NONEQD2L

fortran program.

 The input file must have one line per reflection, with one space (or

tabulation) between each number, the ordering of column is free. It is the H

K L F2 and SG (reflection index h k l, squared structure factor, and sigma) in

any order. If a theta column is present the program can use it, else it

prompts the user to get the unit cell and then comput each theta Bragg angle.

 The sort algorithme is very fast. It use the binary memory tree and can

sort 16500 reflection in two minutes by use of 1M bytes of memory in a micro

VAX II computer.

G.2 - EQUIVALENT AVERAGE AND OR TWIN/MAGNETIC DOMAINS EXPANSSION.

 The program NONEQD2L can be used to perform equivalent reflection average

on a given symmetry ponctual group, and/or, expand input data for twin or

magnetic domain to a set of reflection packets (to use in RAY type data

collection).

 It use a previously theta sorted file (as created by the SORT program)

and write a resulting file. It use a parameter file set as this :

 In the first line (free format).

 Pmin, Icenter, Iout, Iexpe, Inmoy, Icoln, Imsg, Ils2

 Pmin is the minimum of sigma to write in the resulting file.

 .S

 Icenter = 0/1 to donot/do the center operator active for the Friedel pair

[h,k,l] and [-h,-k,-l] same if the ponctuel group is not centered.

 Iout = 0/1 to donot /do a full listing (file NONEQ.LIS)

 Iexpe = 0/1 to donot/do the twin/domain reflection expansion to generate

a data file for twin/magnetic domains fitting.

 Inmoy = 0/1/2 to donot/donormalaverage/dofullreflectiongeneration.

 if Inmoy is 0, there is no equivalent reflection generation.

 if Inmoy is 1, NONEQD2L gives the normal hkl equivalent generation.

 if Inmoy is 2, NONEQD2L generates all hkl equivalent reflection but one

reflexion is generate for each symmetry operator same when it is already

generated. This mode is used with Iexpe = 1, to generate each magnetic

domains/twin reflection contribution.

 Icoln is the total number column in the input file, the first column must

be IH, IK, IL, F2, SG, THETA, so Icoln must be in the range 6..13.

 Imsg 0/1 to donotreplace/replace the average of initial sigma(s) (on

founded equivalent reflections) by the statistic error sigma deduced from the

equivalent reflections.

 Ils2 0/1 to donot/do the LAMBDA/2 reflection generation (to use with

Iexpe = 1).

 The second input line is (free format):

 Nmat, Icenter where :

 Nmat is the number of data symmetry operator matrix.

 Icenter is 0/1 for notcentered/centered ponctual group.

 The next lins must gives Nmat 3*3 integer matrixs.

 The NONEQD2L program complet the ponctual group to get the full operator

list, so the user is required to gives only the generator group elements.

 The MXDLIB:P42MNM.GRP file is an example to perform the average of the

equivalent reflection in the space group D4h/14, and the file MXDLIB:EP4.GRP

is an example to perform a domain expansion data file when the four domain can

be deduced by the ponctual group 4 from the others.

The resulting data file as the next following field :

 NTWIN The domain number (starting from 0). It is always 1 when Iexpe =

0.

 IH, IK, IL the reflection indices.

 The additional column values as copied from the input first related

reflection (if Icoln > 6).

 ISMXD the sentinel for MXD to build the set of reflection lines. If

Iexpe is 0, then ISMXD = 1, else ISMXD is -1 for the contribution except for

the last one.

 RF2, RSG, RTH are the resulting F2, Sg and theta.

_145438768.unknown

_147337896.unknown

